

<u>Magnetism at finite temperature</u> Claudine Lacroix, Insitut Néel, CNRS & UJF, Grenoble

Temperature is an important parameter since exchange energies and ordering temperatures are comparable to room temperature

Curie (Néel) temperature: 1044°K in Fe, 70°K in EuO, 2292K in Gd, 525°K in NiO (AF)

Exchange: 0.01eV ≈ 100°K Magnetocrystalline anisotropy: 1mK to 10K Shape anisotropy: from 1mK to 1K External field: 1T ≈ 1°K

Outline

- The Heisenberg model in molecular field approximation
- Landau theory of phase transitions
- Beyond mean field:
 - -Magnons (spin waves)
 - -Ginzburg-Landau theory
 - -Critical behavior
 - -Role of dimensionality: 1D and 2D systems

Outline

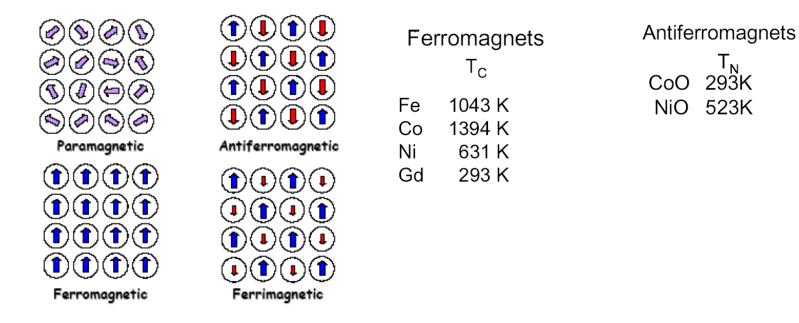
- The Heisenberg model in molecular field approximation
- Landau theory of phase transitions
- Beyond mean field:
 - -Magnons (spin waves)
 - -Ginzburg-Landau theory
 - -Critical behavior
 - -Role of dimensionality: 1D and 2D systems

Various microscopic mecanisms for exchange interactions in solids:

-Localized / itinerant spin systems -Short / long range -Ferro or antiferro

$$H = -\sum_{ij} J_{ij} \, \overrightarrow{S_{\iota}} \, \overrightarrow{S_{j}}$$

Various types of ordered magnetic structures:



Type of magnetic order depends on the interactions

Also spin glasses, spin liquids... : no long range magnetic order

The various exchange mecanisms can usually be described by an effective exchange hamiltonian: Heisenberg model

$$H = -\sum_{ij} J_{ij} \, \overrightarrow{S_{\iota}} \, \overrightarrow{S_{j}}$$

 J_{ij} can be long or short range, positive or negative $\vec{S_i}$: classical (vector) or quantum spin

It is an interaction between spins: if the magnetic moment is given by J instead of S (J=L+S), interaction can be rewritten as:

$$\widetilde{H} = -\sum_{ij} I_{ij} \, \overrightarrow{J}_i \cdot \overrightarrow{J}_j$$

If J = L+S, and $L+2S = g_J J$, then, S = (g-1)J and $I_{ij} = (g-1)^2 J_{ij}$

In this lecture: no anisotropy effect

K coefficients vary with T as M^n

What is mean field approximation ?

one moment in a magnetic field H_{ext} : $M = M_0 g\left(\frac{\mu H}{k_B T}\right)$

Where the function g is

- the Brillouin function (quantum case)
- or the Langevin function (classical spins)

Heisenberg model:
$$H = -\sum_{ij} J_{ij} \ \vec{S_i} \cdot \vec{S_j}$$

Main assumption: $\vec{S_i}$ is replaced by its average $\langle \vec{S_i} \rangle$

$$H = -\sum_{ij} J_{ij} \, \overrightarrow{S_{\iota}} \, \overrightarrow{S_{j}} \implies H_{MF} = -\sum_{ij} J_{ij} \, \left[\langle \overrightarrow{S_{\iota}} \rangle . \, \overrightarrow{S_{j}} + \langle \overrightarrow{S_{j}} \rangle . \, \overrightarrow{S_{\iota}} - \langle \overrightarrow{S_{\iota}} \rangle . \, \overrightarrow{\langle S_{j}} \rangle \right]$$

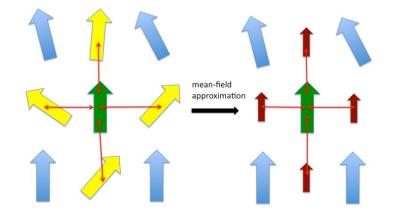
(similar to molecular field, or Hartree-Fock approximation)

$$H_{MF} = -\sum_{ij} J_{ij} \left[\langle \vec{S_i} \rangle, \vec{S_j} + \langle \vec{S_j} \rangle, \vec{S_i} - \langle \vec{S_i} \rangle, \vec{S_j} \rangle \right]$$
$$= -\sum_{ij} 2J_{ij} \langle \vec{S_i} \rangle, \vec{S_j} + constant$$

field acting on \vec{s}_i due to the other spins \vec{s}_j : $h_i = -\sum_j J_{ij} \langle \vec{s}_j \rangle$ If there is also an external field:

$$h_i = -\sum_j J_{ij} \langle \vec{S_j} \rangle + \vec{h}_{ext}$$

<u>Initial problem</u>: many-body system of interacting spins <u>New problem</u>: collection of spins in static local magnetic field Mean field approximation



<u>The field created by the neighbors is static</u>; i.e. all thermal and quantum fluctuations are neglected. When fluctuations are small, it is a good approximation.

Fluctuations are large

- at high temperature: near T_c (critical behavior) and above T_c (paramagnetic fluctuations)
- in low dimensional systems (1D, 2D)
- Small spin value (quantum fluctuations):effect of spin waves is more important for small S-value

If fluctuations are large, corrections to mean field are important

The molecular field approximation

$$H = -\sum_{ij} J_{ij} \ \vec{S_i} \cdot \vec{S_j} - \sum_i \vec{S_i} \cdot \vec{h}_{ext}$$
$$H = -\sum_i \vec{S_i} \cdot (\vec{h_i} + \vec{h}_{ext})$$

Each magnetic moment is in an effective field

 $\vec{h}_{ext} + \sum_{i} 2J_{ij} \langle \vec{S}_{j} \rangle$ external field + field created by the neighboring moments

Local magnetization: $M_i = g\mu_B \langle \vec{S}_i \rangle = M_0 g\left(\frac{\mu H_i}{k_T}\right)$ (g is Brillouin or Langevin function)

Set of coupled equations to determine $\langle \vec{S_i} \rangle$ on each site

In a ferromagnet, it becomes simple since $\langle \vec{S_i} \rangle$ is <u>uniform</u> : $\langle \overrightarrow{S_{\iota}} \rangle = m_F \implies m_F = m_F g\left(\frac{h_{ext} + \alpha m_F}{k_{pT}}\right), \alpha = 2 \sum_j J_{ij}$ New problem: each spin is in a local field that depands on surroundings

$$\mathbf{h}_{i} = -\sum_{j} J_{ij} \langle \overline{S_{j}} \rangle$$

Hypothesis on the nature of ground state:

Ferromagnetic state: $\langle \vec{S_i} \rangle = S, \langle \vec{h_i} \rangle = h$ (uniform solution)

2 sublattices AF $\langle \vec{S_i} \rangle = \pm S, \langle \vec{h_i} \rangle = \pm h$

Helimagnets: $\langle \vec{S_i} \rangle = \vec{S} e^{iqR_i}, \langle \vec{h_i} \rangle = \vec{h} e^{i(qR_i + \varphi)}$

Receipe: for each solution, solve the selfconsistent equations, calculate S, calculate the corresponding free energy, compare the energy of the various solutions.

The molecular field approximation: ferromagnetic solution

Approximation: S_{i} is replaced by its average $\langle S_{i} \rangle = S(T)$

<u>If exchange only between nearest neighbors</u>, $h_{eff} = h_{ext} + 2zJS(T)$, (z= number of nearest neighbors)

Simple problem: magnetic moment in a uniform field h_{eff} :

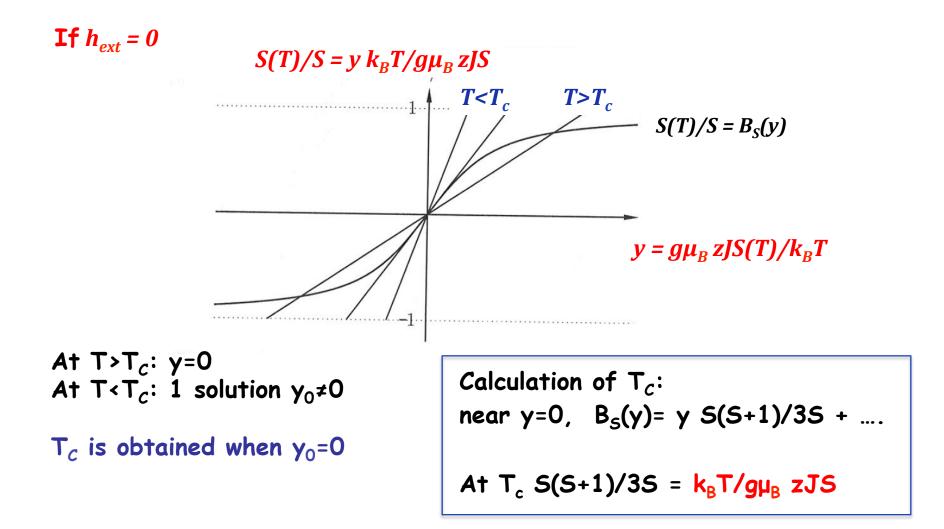
$$S(T) = SB_{S}\left(\frac{g\mu_{B}(hext + 2zJS(T))}{k_{B}T}\right)$$

selfconsistent equation for S(T) (B_s: Brillouin function for spin S)

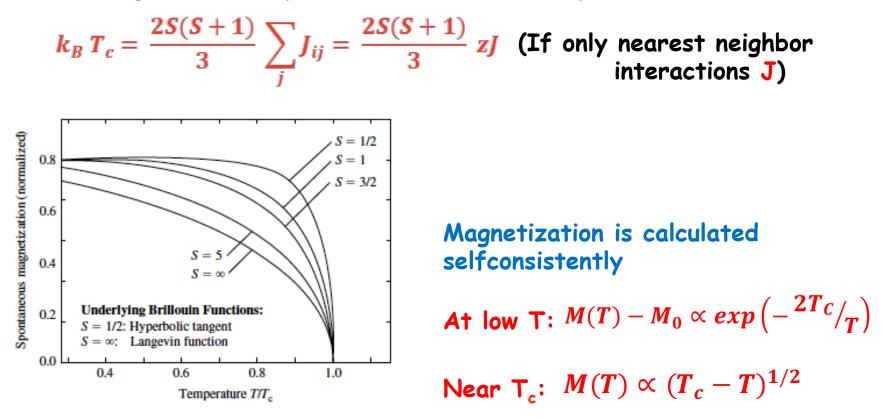
For Antiferromagnet: 2 coupled equations for S_A and S_B (2 sublattices)

(if spins are considered as classical spins: B_S is replaced by Langevin function L)

Solution of the mean field equation: $S(T) = SB_S\left(\frac{g\mu_B(h_{ext} + 2zJS(T))}{k_BT}\right)$



Ferromagnet: Order parameter and Curie temperature

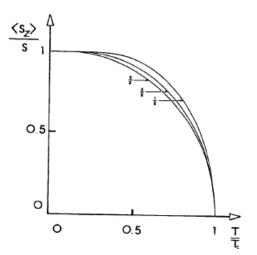


Similar calculations for antiferromagnets or ferrimagnets (2 sublattices, 2 selfconsistent parameters S_A and S_B); also with longer range interactions

Predictions of mean field theories:

- $-T < T_c M(T)$ calculated selfconsistently
- $T_c = 2zJ S(S+1)/3k_B$

At low T: exponential decrease of S(T) Near T_c: S(T) vanishes as $(T_c-T)^{1/2}$ (critical exponent $\beta=1/2$)

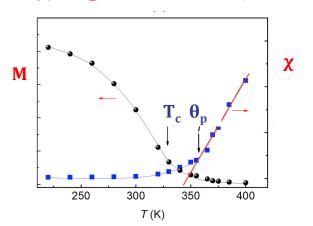


-T>T_c susceptibility: Curie Weiss law

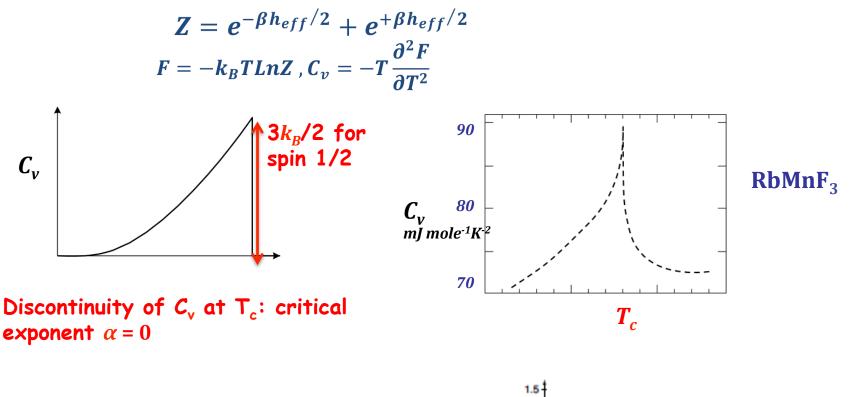
Calculated using
$$M(T) = SB_S\left(\frac{g\mu_B(h_{ext} + 2zJM(T))}{k_BT}\right)$$

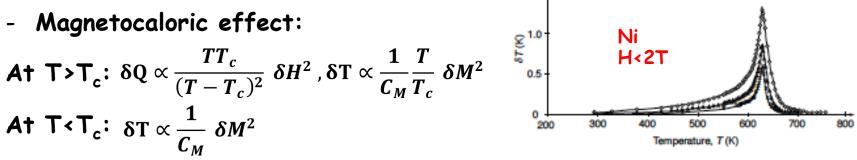
In the paramagnetic state: $M(T) = \chi h_{ext}$. Expansion of the Brillouin function: Curie-Weiss law: $\chi = C/(T - T_c)$, $C = S(S + 1)/3k_B$ (critical exponent $\gamma = 1$)

In general, at T>>T_c $\chi = C/(T - \theta_p)$ with $\theta_p \neq T_c$.



- Specific heat: partition function for one spin in the effective field h_{eff}





Generalization to describe more complex models: antiferromagnets, ferrimagnets,....

Crystal field effects

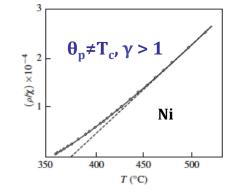
<u>Comparison with experiments</u>: qualitatively correct but:

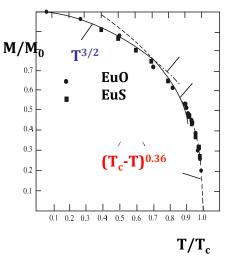
- Mean field T_c generally too large
- Deviations at low T: $M(T)/M_0 = 1 AT^{3/2}$ (in a ferromagnet) = 1-AT² (in antiferromagnet)
- Deviations near T_c :

 $M(T)/M_0 = (Tc-T)^{\beta}$ with $\beta < 0.5$

- Deviations above T_c :

 $\chi(T) \alpha (T - T_c)^{\gamma}$ with $\gamma > 1$

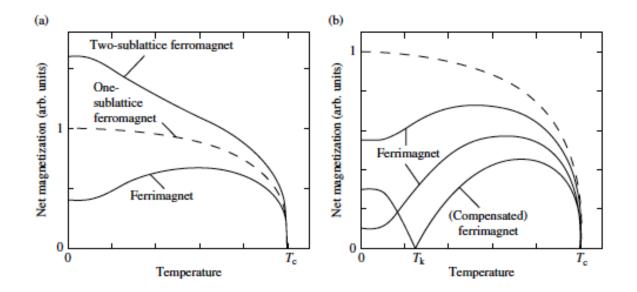




Mean field magnetization for antiferro, ferrimagnets;...

Several sublattices: A, B, C Molecular field on each sublattice created by the neighbors H_A , H_B H_A : $aM_A + \beta M_B + ...$

 $M_A = B_A (g\mu(H_A + H_{ext})/kT), M_B = B_B (g\mu(H_B + H_{ext})/kT)$



Advantages and limitations of mean field approximations

-Simplicity

- -Simple calculations of thermodynamic properties
- -Various magnetic order: ferro, ferri, AF, helimagnets
- -Anisotropy can be taken into account
- -1st step to investigate a model.

-Powerful method, can be applied to many problems in physics

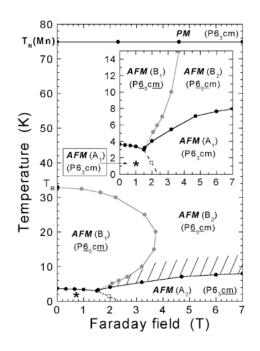
But it is necessary to compare various mean field solutions

-At low T: M(T) - M₀ $\approx \exp(-\Delta/kT)$ instead of T^a (a=2 or 3/2): possible corrections if spin waves are included

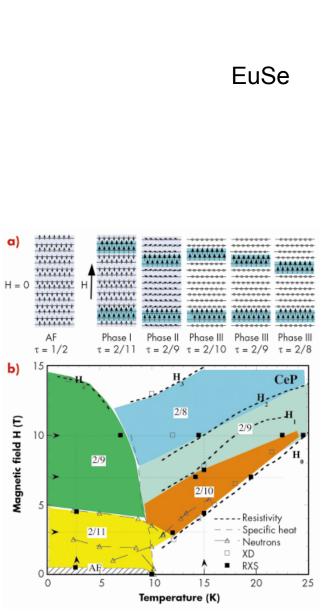
-Near T_c : critical exponents are not correct

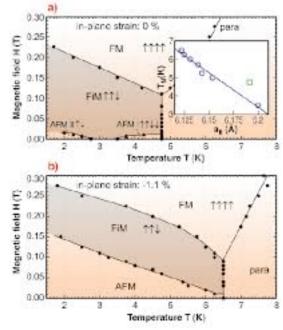
-Overestimation of T_c

-Absence of magnetism above T_c (short range correlations are not included) -Dimensionality effects are not described: absence of magnetism for d=1, $T_c = 0$ for d=2 (Heisenberg case)- In MF T_c is determined by z only



HoMnO3





Estimation of T_c

Mean field: k_BT_C = 2zJ S(S+1)/3k_B for Heisenberg model zJ for Ising model

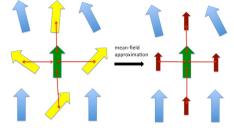
Real T_c is always smaller (even 0 for some models)

T_c for the Ising model:

Table 5.2 Exact and approximate Curie temperatures for the Ising model (in units of $zJ/k_{\rm B}$).

d	z	mean-field	Oguchi	exact
1	2	1	0.782	0.000
2	4	1	0.944	0.567
3	6	1	0.974	0.752
3	8	1	0.985	0.794
3	12	1	0.993	0.816
	1 2 3 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Mean field is better if z is large!



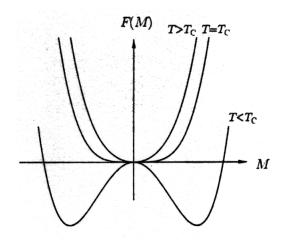
Outline

- The Heisenberg model in molecular field approximation
- Landau theory of phase transitions
- Beyond mean field:
 - -Magnons (spin waves)
 - -Ginzburg-Landau theory
 - -Critical behavior
 - -Role of dimensionality: 1D and 2D systems

Landau expansion for 2nd order phase transition

Free energy near T_c can be expanded in powers of M:

$$F(M, h_{ext}, T) = F_0 + \frac{1}{2}aM^2 + \frac{1}{4}bM^4 + \frac{1}{6}cM^6 + \dots - Mh_{ext}$$



- a, b and c can be calculated for each model (Heisenberg, Hubbard....)
- They depend on the microscopic parameters: J_{ij} , U, band structure...
- They depend on temperature

 \Rightarrow magnetization, specific heat, susceptibility above T_c can be obtained from F(M,H,T)

Different situations depending on the coefficients (c >0)

$$F(M, h_{ext}, T) = F_0 + \frac{1}{2}aM^2 + \frac{1}{4}bM^4 + \frac{1}{6}cM^6 + \dots - Mh_{ext}$$

<u>Magnetization</u> for $h_{ext}=0$ is determined by :

 $M(a+bM^2+cM^4)=0$

1) a>0, and $b^2 - 4ac < 0$: M = 0(no magnetic order)

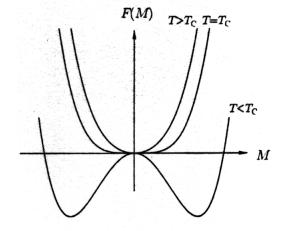
2) a <0 (and b^2 -4ac >0): $M \neq 0$

 \longrightarrow T_c is determined by a(T_c) = 0 \Rightarrow a = a₀ (T-T_c)

And $M(T) = (a_0/b)^{1/2} (T_c - T)^{1/2}$

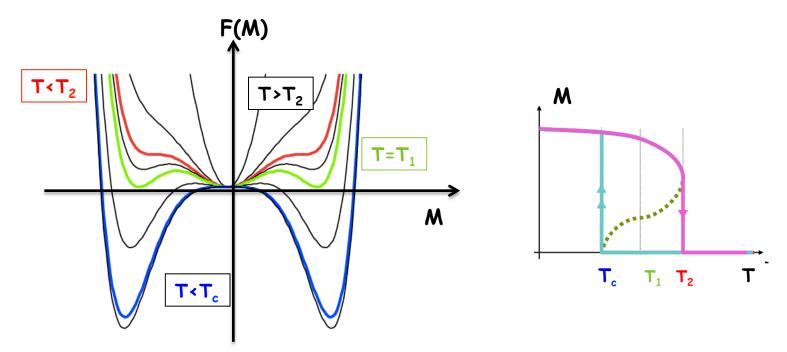
Above T_c : if $h_{ext} \neq 0$, $h_{ext} = aM$

$$\Rightarrow$$
 Curie Weiss law: M/h_{ext} = 1/a₀ (T-T_c)



$$M(a+bM^2+cM^4)=0$$

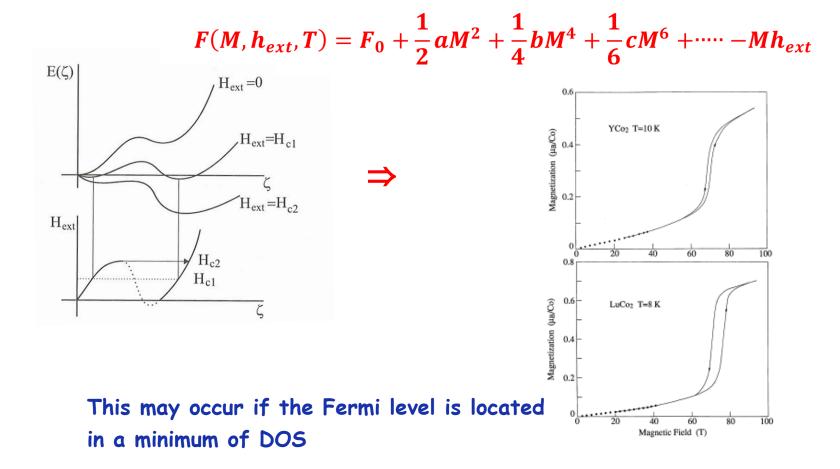
a > 0 and b² -4ac >0 : <u>1st order transition</u> is possible



 $T < T_2$: 2 minima M=0 and M=m; F(m) > F(0) \longrightarrow stable minimum for M=0 T=T_1: F(m)=F(0) T<T_1: 2 minima but F(m)<F(0) \implies stable solution M= m T<T_c : 1 minimum m (a changes sign at T_c)

Transition occurs at T_1 (> T_c) – 2 minima for $T_c < T < T_1$ Hysteresis for $T_c < T < T_1$

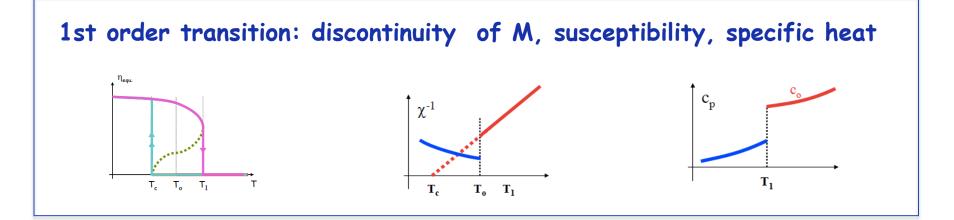
1st order transition under magnetic field: <u>metamagnetism</u> Occurs if a > 0 and b² -4ac >0



Thermodynamic properties within Landau theory

$$F(M, h_{ext}, T) = F_0 + \frac{1}{2}aM^2 + \frac{1}{4}bM^4 + \frac{1}{6}cM^6 + \dots - Mh_{ext}$$

If $a = a_0$ (T-T_c)
Near T_c: $M \propto (T-T_c)^{1/2}$ (Tc), $\chi \propto 1/((T_c-T) (T>T_c)$
Specific heat jump at T_c: a_0T_c/b
At T_c $M \propto h_{ext}^{1/3}$
 $P = \frac{1}{2}$, $\gamma = 1$, $a = 0$, $\delta = 3$
 \rightarrow Mean field exponents



Outline

- The Heisenberg model in molecular field approximation
- Landau theory of phase transitions
- Beyond mean field:
 - -Magnons (spin waves)
 - -Ginzburg-Landau theory
 - -Critical behavior
 - -Role of dimensionality: 1D and 2D systems

Improving the mean field approximation: Ginzburg_Landau theory

In Landau theory M(T) = 0 at $T > T_c$

But near T_c , large fluctuations of M (<M> = 0, but <M²> \neq 0)

Ginzburg-Landau theory: takes into account spatial fluctuations of M M → M(r)

Ginzburg-Landau free energy:

$$F(M, h_{ext}, T) - F_0 = \iiint d^3 r \left(\frac{1}{2} a M(r)^2 + \frac{1}{4} b M(r)^4 + \frac{1}{2} g |\nabla M(r)|^2 - M(r) h_{ext} \right)$$

If $M(r)=M_0+m(r)$ with $m(r) < < M_0$,

$$\Delta F = \sum_{q\neq 0} (gq^2 + a + 3bM_0^2) |m_q|^2$$

Why a $(\nabla M)^2$ contribution? If variation of M(r) is « smooth »: $S_iS_i = S^2 \cos(\theta_i - \theta_i) \approx S^2(1 - (\theta_i - \theta_i)^2/2)$ Si Si Contribution to exchange energy: $J(R_i - R_i)S^2 (\theta_i - \theta_i)^2/2 \approx A (\partial \theta / \partial x)^2$ in the continuum limit If $M(r) = M_0 (\cos\theta(x), \sin\theta(x), 0)$ (1D model) $\Rightarrow \nabla M = M_0 \frac{\partial \theta}{\partial x} (-\sin\theta(x), \cos\theta(x), 0)$ and $(\nabla M)^2 = M_0^2 (\frac{\partial \theta}{\partial x})^2$ $(\nabla M)^2$ is justified if spatial fluctuations are small The

Fourier transform:
$$M(r) = \sum_{q} M(q)e^{iqr} \Rightarrow \vec{\nabla}M(r) = \sum_{q} qM(q)e^{iqr}$$

Improving the mean field approximation: Ginzburg_Landau theory

In Landau theory M(T) = 0 at $T > T_c$

But near T_c , large fluctuations of M (<M> = 0, but <M²> \neq 0)

Ginzburg-Landau theory: takes into account spatial fluctuations of M M → M(r)

Ginzburg-Landau free energy:

$$F(M, h_{ext}, T) - F_0 = \iiint d^3 r \left(\frac{1}{2} a M(r)^2 + \frac{1}{4} b M(r)^4 + \frac{1}{2} g |\nabla M(r)|^2 - M(r) h_{ext} \right)$$

If $M(r)=M_0+m(r)$ with $m(r) < < M_0$,

$$\Delta F = \sum_{q\neq 0} (gq^2 + a + 3bM_0^2) |m_q|^2$$

Additional contribution to the free energy

 \rightarrow contribution to susceptibility, specific heat ...

Correlation length ξ

$$\langle \left| m_q \right|^2
angle \propto rac{kT}{q^2 + 1/\xi^2}$$
 with $\xi \propto \sqrt{rac{gT_c}{T - T_c}}$

(Orstein-Zernike Critical exponent v=1/2)

 $\Delta F = \sum (gq^2 + a + 3bM_0^2) |m_q|^2$

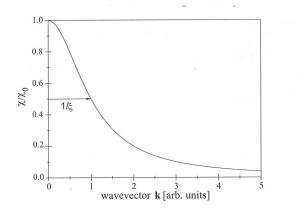
 $\Delta C_v \propto (T-T_c)^{-1/2}$

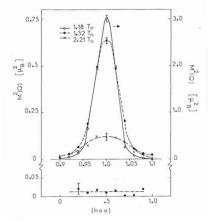
 $a \neq 0$

in real space: $\langle m(r). m(r')
angle \propto exp(-(r-r')/\xi)$

Small q fluctuations are large

q=0 fluctuations and correlation length diverge at T_c





ξ can be measured with neutrons Landau Ginzburg: spatial fluctuations (Landau Lifhitz Gilbert: dynamic)

Valid only if : $1 >> |T-T_c|/T_c >> AT_c^2$ (Ginzburg criterion)

Near T_c : better description of critical behavior.

Description of phase transitions: sophisticated techniques (renormalization group) – Universality of the critical behavior at 2nd order phase transitions

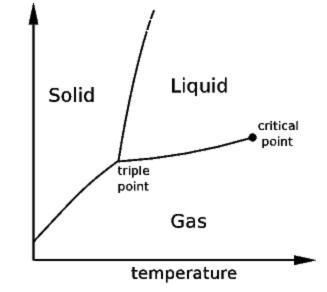
Define the order parameter M if t = (T-Tc)/Tc, and h = μ H/kTc M(T) ~ t^{\beta} (h=0) M(h) ~ h^{1/\delta} (t=0) x(T) ~ t^{-\gamma} C(T) ~ t^{-\gamma} S(k) ~ k^{-2+\eta} (t=0)
Values in M. F. approximation $\beta=1/2$ $\delta = 3$ $\gamma = 1$ $\alpha = 0$

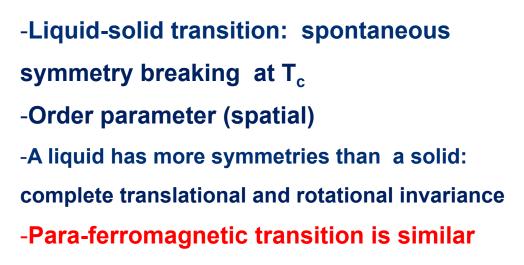
Outline

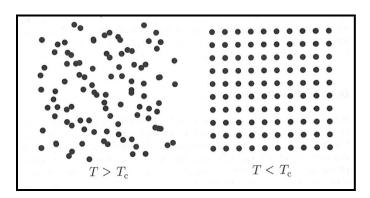
- The Heisenberg model in molecular field approximation
- Landau theory of phase transitions
- Beyond mean field:
 - -Magnons (spin waves)
 - -Ginzburg-Landau theory
 - -Critical behavior
 - -Role of dimensionality: 1D and 2D systems

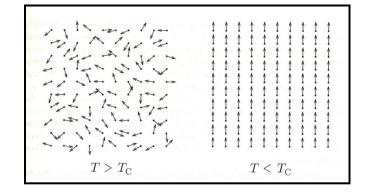
Magnetic transition is an example of phase transitions

pressure









Different types of phase transitions:

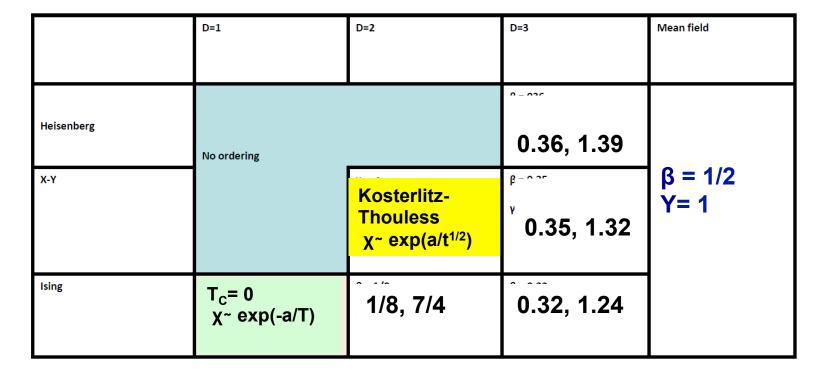
Phenomenon	High T Phase	Low T Phase	Order parameter	Excitations	Rigidity phenomenon	Defects
crystal	liquid	solid	ρ _G	phonons	rigidity	dislocations, grain boundaries
ferromagnet	paramagnet	ferromagnet	М	magnons	permanent magnetism	domain walls
antiferromagnet	paramagnet	antiferromagnet	M (on sublattice)	magnons	(rather subtle)	domain walls
nematic (liquid crystal)	liquid	oriented liquid	$S = \langle \frac{1}{2} (3\cos^2 \theta - 1) \rangle$	director . fluctuations	various	disclinations, point defects
ferroelectric	non-polar crystal	polar crystal	Р	soft modes	ferroelectric hysteresis	domain walls
superconductor	normal metal	superconductor	$ \psi e^{i\phi}$	-	superconductivity	flux lines

Critical exponents

they depend on

- -the model (Heisenberg, X-Y, Ising...)
- the dimensionality of the system

 $M(T) \simeq (T_c - T)^{\beta} \ , \simeq \chi(T) \simeq (T - T_c)^{-\gamma}$



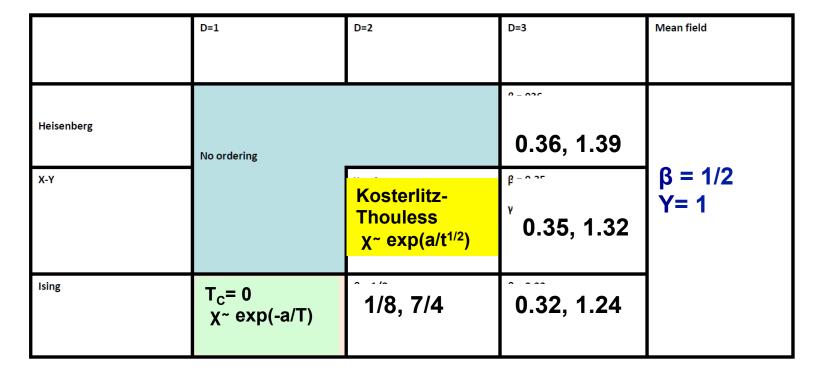
 $\alpha + 2\beta + \gamma = 2$; $Dv = 2 - \alpha$

Critical exponents

they depend on

- -the model (Heisenberg, X-Y, Ising...)
- the dimensionality of the system

 $M(T) \simeq (T_c - T)^{\beta} , \simeq \chi(T) \simeq (T - T_c)^{-\gamma}$

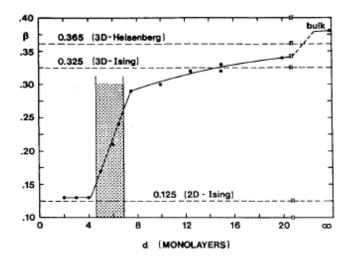


Deviations from mean field indicate short range correlations near T_c

Comparison with experiments

0					
	Mean field	Experiment	2D Ising	3D Ising	3D Heisenberg
$\chi(T) \propto (T-T_{\rm C})^{-\gamma}$	1	1.3-1.4	7/4	1.24	1.39
$M(T) \propto (T_{\rm C} - T)^{\beta}$	1/2	≈1/3	1/8	0.324	0.362
$C(T) \propto T - T_{\rm C} ^{-\alpha}$	0	-0.1-0.1	log	0.110	-0.115
$M(B,T=T_{\rm C}) \propto B ^{1/\delta}$	3	≈5	15	4.82	4.82

<u>Critical exponents depend on the dimensionality</u>



<u>critical exponent β in thin Ni films on W</u>:

- at 6 monolayers transition from 2- to 3-

dimensional behavior

- crossover from Ising to Heisenberg due to

anisotropy

(K. Baberschke)

(K. Baberschke)

Outline

- The Heisenberg model in molecular field approximation
- Landau theory of phase transitions
- Beyond mean field:
 - -Magnons (spin waves)
 - -Ginzburg-Landau theory
 - -Critical behavior
 - -Role of dimensionality: 1D and 2D systems

Improving mean field at low T: spin waves

1 dimensional model with ferromagnetic nearest neighbor exchange

$$H = -2\sum_{i} J \vec{S_{i}} \vec{S_{i+1}} = -2J\sum_{i} S_{i}^{z} S_{i+1}^{z} - J\left(\sum_{i} S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+}\right)$$

Ground state:

Excited state with 1 reversed spin $\uparrow \uparrow \downarrow \uparrow \uparrow$ Not an eignenstate of H (eigenstate of $-2J \sum_{i} S_{i}^{z} S_{i+1}^{z}$) Ψ_{i} : wave function with spin reversed on site i $-J\left(\sum_{i} S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+}\right)$ \Rightarrow The spin flip will propagate on sites i-1 and i+1

 $H\psi_i = -J(\Psi_{i-1} + \Psi_{i+1}) + (-NJ/2 + J) \Psi_i$

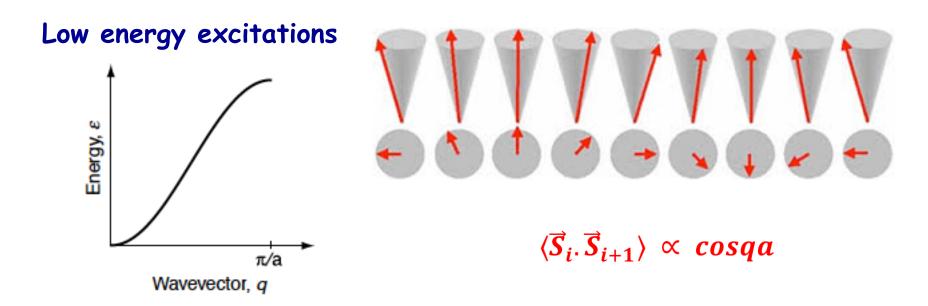
 $H \psi_{i} = -J(\Psi_{i-1} + \Psi_{i+1}) + (-NJ/2 + J) \Psi_{i}$

Fourier transform: $\Psi(q) = \sum exp(iqR_i) \Psi_i$

 $H \Psi(q) = -NJ/2 \Psi(q) + J(1-\cos qa) \Psi(q)$

This is an eigenstate (no longer true for states with more spin flips)

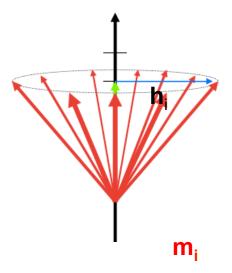
Excitation energy: $E(q) = J(1 - \cos qa) \approx Ja^2/2 q^2$



« Classical » spin waves

Local field h_i on each site: $h_i = J(m_{i-1} + m_{i+1})$

Moment on site i: precession in field h_i $dm_i/dt = -\gamma m_i * h_i$ (γ gyromagnetic factor) $dm_i/dt = -\gamma J m_i * (m_{i-1} + m_{i+1})$

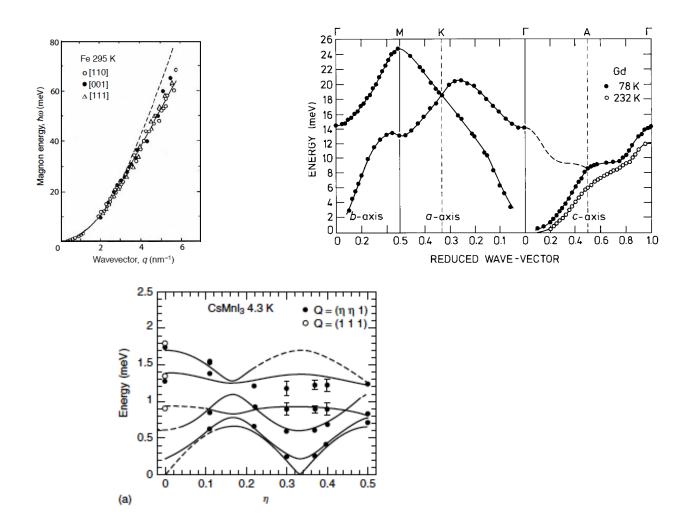


- 1. Fourier transform (time and space) $\rightarrow m_i(t) = m_0 e^{i\omega t} e^{iqR}$
- 2. Linearization of dm/dt
- 3. Similar to previous approach $w(q) = \gamma J(1 \cos qa)$

Spin waves in antiferromagnets

 \overrightarrow{q}_{x}

Examples of spin wave spectra (inelastic neutrons)



Magnons: low T properties

In ferromagnets: at low k: $E(k) \approx zJM S(ka)^2 = k^2$

In antiferromagnets: E(k) ≈ zJM ka

Magnetization at low $T : M(T) = M_0 - number of excited magnons$

Magnons obey Bose-Einstein statistics $N_{sw} = \sum_{k} \langle n_{k} \rangle = \sum_{k} \frac{1}{e^{E(k)/T} - 1}$ $\langle S \rangle \approx S - \sum_{k} n_{B}(\omega_{k}) \qquad \sum_{k} \longrightarrow \int dk^{d} = \int dk \frac{k^{d-1}}{(2\pi)^{d}}$ At low T, in 3D systems: for a ferromagnet: $M(T) = M_{0} - A(k_{B}T/D)^{3/2}$

for AF (sublattice magnetization): $M(T) = M_0 - B(kT/C)^2$

(mean field $exp(-A/k_BT)$)

Estimation of T_c from spin waves:

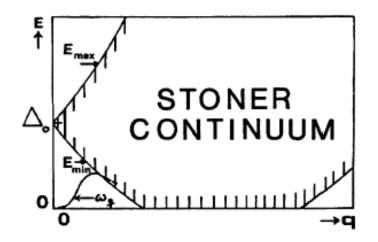
$$\langle S \rangle \approx S - \sum_{k} n_B(\omega_k)$$

 T_c is determined by, $\langle S \rangle = 0 \rightarrow$ value for T_c smaller by a factor 10 compared to mean field (2zS(S+1)/3k_B)

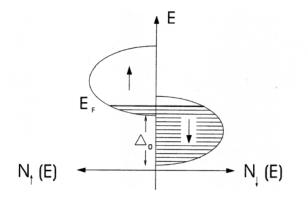
Specific heat: magnons contribute to energy

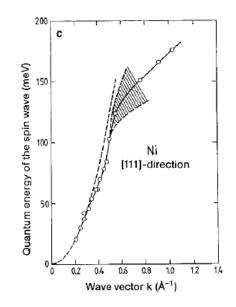
 $\Delta E = \sum w_k n_B(w_k) \rightarrow C_v \propto T^2 \text{ (Ferro) or } T \text{ (AF)}$ (mean field: exp(-A/k_BT)) <u>Spin waves also exist in itinerant</u> <u>ferromagnets</u>:

2 types of excitations:
- Stoner excitations: transition from a filled ↑ state to an empty ↓ state: gap △ at q=0;
- Collective excitations: spin waves



Magnetic excitations in Ni (∆₀≈100meV)





Outline

- The Heisenberg model in molecular field approximation
- Landau theory of phase transitions
- Beyond mean field:
 - -Magnons (spin waves)
 - -Ginzburg-Landau theory
 - -Critical behavior
 - -Role of dimensionality: 1D and 2D systems

Dimensionality effect

$$\langle S \rangle \approx S - \sum_{k} n_B(\omega_k) \sum_{k} \longrightarrow \int dk^d = \int dk \, \frac{k^{d-1}}{(2\pi)^d}$$

In ferromagnets: $w_k = Dk^2$

 $\int \frac{q^{d-1}}{exp(Dq^2/k_BT)-1} \quad \text{becomes (x=Dq^2/kT):} \quad T^{d/2} \int \frac{x^{d/2-1}}{exp(x)-1} dx$

At $T \neq 0$ integral is divergent for d=1 or 2

→ No ferromagnetism in 1 and 2 dimensions at T>0

In AF: $w_k = Ck$: integral is divergent in 1 dimension

Mermin-Wagner theorem: For Heisenberg model, no long range order in 1 and 2 dimensional systems at T>0

- Magnetism is possible at T=0
- Valid only in the absence of anisotropy

Anisotropy may stabilize ferromagnetism in 2-D systems (surfaces and thin films)

Mermin-Wagner theorem does not apply to Ising or XY models

Heisenberg spins with anisotropy

Uniaxial anisotropy: $-KS_i^{z^2}$

easy axis: K > 0: spin wave gap at 0°K $\epsilon(k) = 2S[J(0) - J(q) + K]$ Variation of magnetic moment at T \neq 0: $M(T) - M(0) = N_{SW}$ In 2D; no divergence of NSW: at low T: $N_{SW} \propto Texp\left(-\frac{A}{T}\right)$

Easy plane anisotropy: K < 0 $\epsilon(k) = \sqrt{Dk^2(Dk^2 + 2|K| \propto k)}$

No spin gap; N_{sw} is divergent at finite T. Order at T=0?

Anisotropy may stabilize ferromagnetism in 2-D systems

Ising model in 1D systems (Mermin-Wagner does not apply)

$$H = -\sum_{i,j} J_{ij} S_i S_j$$
 with $S_i = \pm 1$

Describes many physical situations: A-B alloy, magnetic system with infinite uniaxial anisotropy, lattice-gas transition

Ising chain:
$$H = -\sum_{i=1}^{N-1} J_i S_i S_{i+1}$$

Exactly solvable $Z_N(T) = 2^N \prod_{i=1}^{N-1} \cosh\left(\frac{J_i}{k_B T}\right)$

No phase transition: F=U-TS

1 defect: $\uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow$

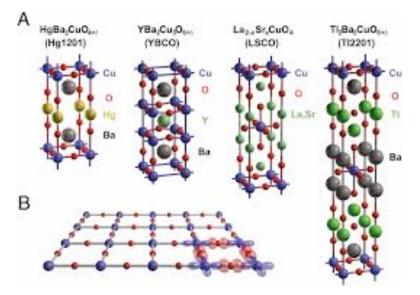
Energy cost: $\Delta U= 2J$, $\Delta S= kLn\Omega = kLnN \Delta F=2J-kTLnN$ if T≠0, defects are alsways favored by entropy \Rightarrow no order (in 2D T_c≠0)

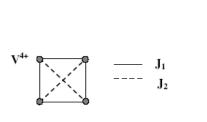
Examples of 2D systems:

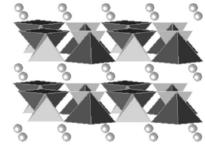
- Compounds with in-plane interactions >> interplane interactions examples: La₂CuO₄.....

- Ultrathin films : 2d character if d< 2π/k_F 0.2 -2 nm
 d<exchange length: depends on the nature of exchange: 0.2 10 nm
- Surfaces of bulk materials
- Superlattices F/NM: interlayer interactions

Some low dimensional systems

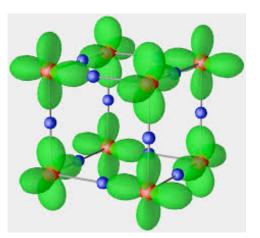


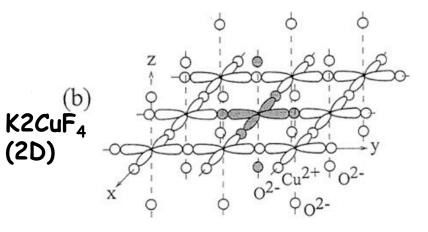




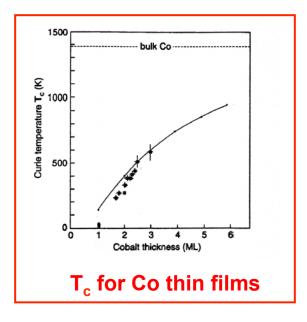
Li₂VO(Si,Ge)O₄

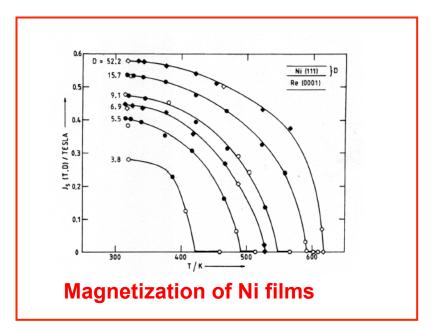
cuprates

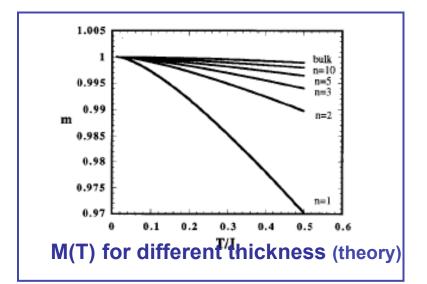




Reduction of Curie temperature







In 2D: - no order if no anisotropy

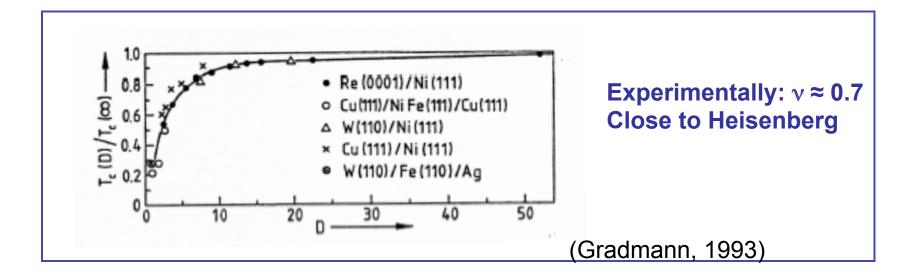
- with anisotropy: reduced $\rm T_{c}$ (reduction of nb of nearest neighbors)

From 3D to 2D behavior:

- In 3D systems correlation length diverges at Tc: $\xi = \xi_0 \left| \frac{T T_c}{T_c} \right|^2$
- Crossover from 2D to 3D when the thickness $d \approx \xi$
- Asymptotic form for Tc:

$$\frac{T_c(\infty) - T_c(d)}{T_c(d)} = \left(\frac{d}{\xi_0}\right)^{-\frac{1}{\nu}}$$

(Heisenberg: v = 0.7 Ising: 0.6)



Summary

-Mean field approximation is easy to handle. Allows to compare easily different types of orderings

-In many cases (3D systems) is gives the correct qualitative ground state

- -Temperature variation:
 - at low T: spin waves
 - T_c too large, critical exponents not correct (short range fluctuations)
- Mean field wrong in low dimension systems

Some general reference books

S. Blundell: Magnetism in Condensed Matter (Oxford University Press, 2001) J.M.D. Coey: Magnetism and Magnetic materials (Cambridge University Press 2009)

R. Skomski: Simple models of Magnetism (Oxford University Press, 2008)

More advanced books

D.I. Khomskii: Basic aspects of the quantum theory of magnetism (Cambridge University Press 2010) (in particular: Phase transitions, Landau and Ginzburg Landau theory, magnons)

N. Majilis: The quantum theory of magnetism (World scientific 2007) (in particular Molecular field approximation, magnons

P. Mohn: Magnetism in the solid state (Springer, 2006) (most devoted to itinerant magnetism; see also J. Kübler in 'Handbook of Magnetism and Magnetic materials', vol1)

D.P. Landau: Phase transitions in 'Handbook of Magnetism and Magnetic materials', vol1 (Wiley 2007)

I.A. Zaliznyak: Spin waves in bulk materials in 'Handbook of Magnetism and Magnetic materials', vol1 (Wiley 2007)