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Temperature is an important parameter since exchange energies and 
ordering temperatures are comparable to room temperature 
 
Curie (Néel) temperature: 1044°K in Fe, 70°K in Eu0,  2292K in Gd, 
525°K in NiO (AF)  
 
Exchange: 0.01eV ≈ 100°K   
Magnetocrystalline anisotropy: 1mK to 10K 
Shape anisotropy: from 1mK to 1K  

External field: 1T ≈ 1°K 
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Various microscopic mecanisms for exchange interactions in solids: 
 
- Localized / itinerant spin systems 
- Short / long range 
- Ferro or antiferro 

Various types of ordered magnetic structures:  

Type of magnetic order depends on the interactions 

Also spin glasses, spin liquids… : no long range magnetic order 



The various  exchange mecanisms can usually be described by an 
effective exchange hamiltonian: Heisenberg model 

   

Jij can be long or short range, positive or negative 

    : classical (vector) or quantum spin 

It is an interaction between spins: if the magnetic moment is given by 
J instead of S (J=L+S), interaction can be rewritten as:  

 

If J	
  =	
  L+S, and L+2S	
  =	
  gJ	
  J, then, S	
  =	
  (g-­‐1)J	
  and Iij	
  =	
  (g-­‐1)2	
  Jij	
  

In this lecture: no anisotropy effect  
 
K coefficients vary with T as Mn  
 



What is mean field approximation ?  
 
one moment in a magnetic field Hext: 
 
Where the function g is  
-  the Brillouin function (quantum case)  
-  or the Langevin function (classical spins) 
 
Heisenberg model:   
 
 
Main assumption:    is replaced by its average  
 
 
 
 
 
(similar to molecular field, or Hartree-Fock approximation) 



 field acting on     due to the other spins    :  
 
 
If there is also an external field: 
 
 

Initial problem: many-body system of interacting spins 

New problem: collection of spins in static local magnetic field   

Jij 



Mean field approximation 

The field created by the neighbors is static; i.e. all thermal and quantum 
fluctuations are neglected. When fluctuations are small, it is a good 
approximation.  
 
Fluctuations are large 
-  at high temperature: near Tc (critical behavior) and above Tc 

(paramagnetic fluctuations) 
-  in low dimensional systems (1D, 2D) 
-  Small spin value (quantum fluctuations):effect of  spin waves is more 

important for small S-value 
If fluctuations are large, corrections to mean field are important 
 



The molecular field approximation 
 

       
 
 
 
Each magnetic moment is in an effective field 

     external field + field created by the 
    neighboring moments 

 
Local magnetization:                                    (g is Brillouin or 

Langevin function) 
Set of coupled equations to determine       on each site 
 
In a ferromagnet, it becomes simple since        is uniform :  
 
 
 
 



New problem: each spin is in a local field that depands on 
surroundings 
 
 
 
 
Hypothesis on the nature of ground state: 
 
Ferromagnetic state:           (uniform solution) 
 
2 sublattices AF 
 
Helimagnets:    
 
Receipe: for each solution, solve the selfconsistent equations, 
calculate S, calculate the corresponding free energy, compare the 
energy of the various solutions.  



The molecular field approximation: ferromagnetic solution 
 
Approximation: Sj is replaced by its average <Sj>	
  =	
  S	
  (T)	
  
	
  
If exchange only between nearest neighbors, heff	
  =	
  hext	
  +	
  2zJS(T),  (z= 

number of nearest neighbors) 
 
Simple problem: magnetic moment in a uniform field heff: 
 
 
 
 
 
 

For Antiferromagnet: 2 coupled equations for SA and SB (2 sublattices) 
 
(if spins are considered as classical spins: BS is replaced by Langevin 

function L)	
  

selfconsistent equation for S(T) 
(BS: Brillouin function for spin S) 



Solution of the mean field equation:  
 
	
  
	
  
If	
  hext	
  =	
  0	
  
 S(T)/S	
  =	
  y	
  kBT/gμB	
  zJS	
  

y	
  =	
  gμB	
  zJS(T)/kBT	
  

At T>TC: y=0 
At T<TC: 1 solution y0≠0 
 
TC is obtained when y0=0 

S(T)/S	
  =	
  BS(y)	
  
T<Tc	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  T>Tc	
  

Calculation of TC:  
near y=0,  BS(y)= y S(S+1)/3S + …. 
 
At Tc S(S+1)/3S = kBT/gµB zJS 



Ferromagnet: Order parameter and Curie temperature 
 

     (If only nearest neighbor 
      interactions J) 

 
 

Magnetization is calculated 
selfconsistently 

At low T:  
 
Near Tc:  

Similar calculations for antiferromagnets or ferrimagnets (2 sublattices, 
2 selfconsistent parameters SA	
  and	
  SB);  
also with longer range interactions  



Predictions of mean field theories:  
 
- T<Tc M(T) calculated selfconsistently 

- Tc	
  =	
  2zJ	
  S(S+1)/3kB	
  
 

 
- T>Tc susceptibility: Curie Weiss law  

Calculated using 
 
In the paramagnetic state: M(T)=	
  χ	
  hext. Expansion of the Brillouin function:  
 
 
 
In general, at T>>Tc    

   with θp	
  ≠	
  Tc.  

At low T: exponential decrease of S(T) 
Near Tc: S(T) vanishes as (Tc-T)1/2 (critical exponent β=1/2) 

Curie-Weiss law:        (critical exponent γ = 1)  

 
 
  
 
  
 

M
	
  
	
  
	
  
	
  

χ	
  
	
  
	
  Tc	
  	
  θp	
  



- Specific heat: partition function for one spin in the effective field heff 

Cv	
  
3kB/2 for 
spin 1/2 

Discontinuity of Cv at Tc: critical 
exponent α	
  =	
  0	
  

RbMnF3	
  

Tc	
  

Cv	
  
mJ	
  mole-­‐1K-­‐2	
  

90	
  
	
  
	
  
	
  
80	
  
	
  
	
  
	
  
70	
  

-  Magnetocaloric effect: 

At T>Tc: 
 
At T<Tc:  

Ni 
H<2T 



Generalization to describe more complex models: antiferromagnets, 
ferrimagnets,…. 
 
Crystal field effects 
 
 
Comparison with experiments: qualitatively correct but: 
 
-  Mean field Tc generally too large 

-  Deviations at low T: M(T)/M0	
  =	
  1	
  –	
  AT3/2	
   ( in a  ferromagnet) 
          =	
  1-­‐AT2	
  	
  	
  ( in antiferromagnet)  

 
-  Deviations near Tc:  

M(T)/M0	
  =	
  (Tc-­‐T)β	
  with	
  β	
  <	
  0.5	
  

-  Deviations above Tc:  

χ(T)	
  α	
  (T	
  –Tc)γ	
  with	
  γ	
  >	
  1	
  
 
 
 

EuO	
  
EuS	
  

T3/2	
  

(Tc-­‐T)0.36	
  

T/Tc	
  

M/M0	
  

Ni	
  

θp≠Tc,	
  γ	
  >	
  1	
  	
  	
  



Mean field magnetization for antiferro, ferrimagnets;..  

Several sublattices: A, B, C …… 
Molecular field on each sublattice created by the neighbors HA, HB….  
 HA: αMA + βMB +… 
 
MA=BA (gµ(HA+Hext)/kT), MB= BB (gµ(HB+Hext)/kT) 
 



Advantages and limitations of mean field approximations 
 
- Simplicity  
- Simple calculations of thermodynamic properties 
- Various magnetic order: ferro, ferri, AF, helimagnets 
- Anisotropy can be taken into account 
- 1st step to investigate a model.  
- Powerful method, can be applied to many problems in physics 

But it is necessary to compare various mean field solutions 

- At low T: M(T)	
  -­‐	
  M0	
  ≈	
  exp(-­‐Δ/kT)	
  instead of Tα (α=2 or 3/2): possible corrections if 
spin waves are included 
- Near Tc : critical exponents are not correct 
- Overestimation of Tc 
- Absence of magnetism above Tc (short range correlations are not included) 
- Dimensionality effects are not  described: absence of magnetism for d=1, Tc = 0 
for d=2 (Heisenberg case)- In MF Tc is determined by z only 



HoMnO3 

EuSe 

CeP 



 
 

Estimation of TC   
 

 Mean field: kBTC = 2zJ S(S+1)/3kB for Heisenberg model 
       zJ for Ising model 

 
 Real Tc is always smaller (even 0 for some models) 

   

Tc for the Ising model: 

Mean field is better if z is large! 
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Landau expansion for 2nd order phase transition 
 
Free energy near Tc can be expanded in powers of M: 
 
 
 

 
 
⇒ magnetization, specific heat, susceptibility above Tc can be obtained 
from F(M,H,T) 
 

 - a, b and c can be calculated for each 
model (Heisenberg, Hubbard.... ) 
 
- They depend on the microscopic 
parameters: Jij, U, band structure…  
 
- They depend on temperature 
 



Different situations depending on the coefficients (c >0) 
 
 
 
Magnetization for hext=0 is determined by :  
 
 
 
 
1)   a>0, and b2 -4ac <0: M = 0  
(no magnetic order) 
 
2) a <0 (and b2 -4ac >0):  M ≠ 0  

 Tc is determined by  a(Tc) = 0   ⇒ a = a0 (T-Tc) 
 
And  M(T) = (a0/b)1/2  (Tc-T)1/2 
 
Above Tc: if hext≠ 0 ,  
 
⇒  Curie Weiss law: M/hext = 1/a0 (T-Tc)        
 



a > 0 and b2 -4ac >0 : 1st order transition is possible 

T>T2 T<T2 

T=T1 

T<Tc 

F(M) 

M 

M 

T Tc    T1   T2  

T<T2: 2 minima M=0 and M=m; F(m) > F(0)       stable minimum for M=0 
T=T1:  F(m)=F(0) 
T<T1: 2 minima but F(m)<F(0)       stable solution M= m 
T<Tc : 1 minimum m  (a changes sign at Tc) 
 
Transition occurs at T1 (> Tc) – 2 minima for Tc<T<T1  
Hysteresis for Tc<T<T1  
 
 



1st order transition under magnetic field: metamagnetism 
 
Occurs if a > 0  and b2 -4ac >0  

⇒ 

This may occur if the Fermi level is located  
in a minimum of DOS 
 



Thermodynamic properties within Landau theory 
 
 
 
 
If a =a0 (T-Tc)  
 
 Near TC:   M ∝ (T-Tc)1/2  (T<Tc) , χ ∝ 1/((Tc-T) (T>TC) 
 
Specific heat jump at TC: a0Tc/b 
 
At Tc M ∝ hext

1/3
 

Critical exponents 
β = ½, γ = 1, α = 0, δ=3 
è Mean field exponents 

1st order transition: discontinuity  of M, susceptibility, specific heat 
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Improving the mean field approximation: Ginzburg_Landau theory 
 
 
In Landau theory M(T) =0 at T>Tc 

 
But near Tc, large fluctuations of M (<M> = 0 , but <M2>≠0) 
 
Ginzburg-Landau theory: takes into account spatial fluctuations of M  

  M è M(r) 
 
Ginzburg-Landau free energy:  
 
 
 
 
If M(r)=M0+m(r) with m(r)<<M0,  
 



 Why a    (∇M)2 contribution? 
 
If variation of M(r)  is « smooth »:  
 
SiSj = S2 cos (θi – θj) ≈ S2(1 – (θi – θj)2/2) 
 
Contribution to exchange energy:  
 
      J(Ri – Rj)S2  (θi – θj)2/2  ≈  A (∂θ/∂x)2  in the continuum limit 
 
If M(r) = M0 (cosθ(x), sin θ(x), 0) (1D model) 

  
➡︎∇M	
  =	
  M0	
  ∂θ/∂x	
  (-­‐sinθ(x),	
  cos	
  θ(x),	
  0)	
  and (∇M)2	
  =	
  M0	
  

2
	
  (∂θ/∂x)2	
   

	
  
 
The   (∇M)2  is justified if spatial fluctuations are small  
 
 
Fourier transform:   
 

Si             Sj 



Improving the mean field approximation: Ginzburg_Landau theory 
 
 
In Landau theory M(T) =0 at T>Tc 

 
But near Tc, large fluctuations of M (<M> = 0 , but <M2>≠0) 
 
Ginzburg-Landau theory: takes into account spatial fluctuations of M  

  M è M(r) 
 
Ginzburg-Landau free energy:  
 
 
 
 
If M(r)=M0+m(r) with m(r)<<M0,  
 



Additional contribution to the free energy 
 
→ contribution to susceptibility, specific heat …  
 
Correlation length ξ 
 

    
 
in real space:   
 
Small q fluctuations are large 
 
q=0 fluctuations and correlation length diverge at Tc    
 
 
 

with (Orstein-Zernike 
Critical exponent ν=1/2) 

ξ can be 
measured with 
neutrons  

ΔCv ∝ (T-Tc)-1/2 



Landau Ginzburg: spatial fluctuations (Landau Lifhitz Gilbert: dynamic) 
 
Valid only if : 1>>⎥T-Tc⎥/Tc >> ATc

2 (Ginzburg criterion) 
 
Near Tc: better description of critical behavior. 
 
             Description of phase transitions: sophisticated techniques 
(renormalization group) – Universality of the critical behavior at 2nd 
order phase transitions 
 
Define the order parameter M 
if t = (T-Tc)/Tc, and  h = µH/kTc 

     values in M. F. approximation
 M(T) ~ tβ  (h=0)     β=1/2 
 M(h) ~ h1/δ (t=0)     δ = 3    
 χ(T) ~ t-γ     γ = 1 
 ζ(T) ~ t-ν      
 C(T) ~ t-α     α = 0 
 S(k) ~ k-2+η (t=0)      
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Magnetic transition is an example of phase transitions 
 

 
- Liquid-solid transition:  spontaneous 

symmetry breaking  at Tc 

- Order parameter (spatial) 
- A liquid has more symmetries than  a solid: 

complete translational and rotational invariance 

- Para-ferromagnetic transition is similar 

 



Different types of phase transitions:  

 

      



Critical exponents 
 they depend on  

 -the model (Heisenberg, X-Y, Ising…) 
 - the dimensionality of the system 

 
 
° 
 

γ-
c

β
c )T-(T(T)χ  ,  )T-T()T(M ∝∝∝

Kosterlitz-
Thouless 
 χ∼ exp(a/t1/2) 

TC= 0 
 χ∼ exp(-a/T) 
 

β = 1/2 
Υ= 1 

1/8, 7/4 

 
0.36, 1.39 

 
0.35, 1.32 

0.32, 1.24 

 α +2β  + γ=2 ; Dν = 2- α 



Critical exponents 
 they depend on  

 -the model (Heisenberg, X-Y, Ising…) 
 - the dimensionality of the system 

 
 
° 
 

γ-
c

β
c )T-(T(T)χ  ,  )T-T()T(M ∝∝∝

Deviations from mean field indicate short range correlations near Tc 

Kosterlitz-
Thouless 
 χ∼ exp(a/t1/2) 

TC= 0 
 χ∼ exp(-a/T) 
 

β = 1/2 
Υ= 1 

1/8, 7/4 

 
0.36, 1.39 

 
0.35, 1.32 

0.32, 1.24 



Comparison with experiments 

Critical exponents depend on the dimensionality 

(K. Baberschke) 

critical exponenent β  in thin Ni films on W:  

- at 6 monolayers transition from 2- to 3- 

dimensional behavior  

- crossover from Ising to Heisenberg due to 

anisotropy 
(K. Baberschke) 
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Improving mean field at low T: spin waves 
 
1 dimensional model with ferromagnetic nearest neighbor exchange 
 
 
 
 

Ground state:           ↑↑↑↑↑   Energy: -NJ/2 
 
Excited state    
with 1 reversed spin        Not an eignenstate of H 

         (eigenstate of            )  
 
Ψi: wave function with spin reversed on site i 
 
 
 
 
   Hψi = -J(Ψi-1 + Ψi+1) + (-NJ/2 +J) Ψi 
 

↑↑↓↑↑ 

è The spin flip will propagate  
on sites i-1 and i+1 



 H ψi = -J(Ψi-1 + Ψi+1) + (-NJ/2 +J) Ψi 
 
Fourier transform: Ψ(q) = ∑ exp(iqRi) Ψi 
 

  H Ψ(q) = -NJ/2 Ψ(q) + J(1-cosqa) Ψ(q)  
 
This is an eigenstate (no longer true for states with more spin flips) 
 
  Excitation energy: E(q) = J(1-cosqa) ≈ Ja2/2 q2   
 
 
Low energy excitations 
         



« Classical » spin waves 
 
Local field hi on each site: hi= J(mi-1 + mi+1) 
 
Moment on site i: precession in field hi 
 
dmi/dt = -γmi×hi (γ gyromagnetic factor) 
 
dmi/dt = -γJ mi×(mi-1 + mi+1) 
 
 
 
 
 
1.  Fourier transform (time and space)  è mi(t) = m0 eiωt eiqR 

2.  Linearization of dm/dt 
3.  Similar to previous approach  ω(q) = γJ(1-cosqa)  
  
 
 

hi 

mi 



Spin waves in antiferromagnets 

↓↑↓↑↓↑↓ Not an eigenstate 

More complicated calculations 
 
E(q) = J∣sinqa∣ 

↓↑    ➡︎        ↑↓ 



Examples of spin wave spectra (inelastic neutrons) 



Magnons:  low T properties 
 
In ferromagnets:at low k:  E(k) ≈ zJM S(ka)2 = k2 
 
In antiferromagnets: E(k) ≈  zJM ka 
 
Magnetization at low T : M(T) = M0 – number of excited magnons 
 
 
Magnons obey Bose-Einstein statistics 
 
 
 
 
 
At low T, in 3D systems: for a ferromagnet:  
 

     for AF (sublattice magnetization): M(T)  =  M0  –  B(kT/C)2

 
 
  (mean field exp(-A/kBT)) 
 
 
 
 
 
 
 

∑∑
k

T/)k(E
k

ksw 1- e
1

 = >n<=N



Estimation of Tc from spin waves: 
 
 
  
 
Tc is determined by, <S> =0 → value for Tc smaller by a factor 10 
compared to mean field (2zS(S+1)/3kB) 
 
 
Specific heat: magnons contribute to energy  
 

 ΔE = ∑ ωk nB(ωk) → Cv ∝ T2 (Ferro) or T (AF) 
(mean field: exp(-A/kBT)) 



Spin waves also exist in itinerant 
ferromagnets: 
 
2 types of excitations:  
-  Stoner excitations: transition from a  
filled ↑ state to an empty ↓ state: 
gap Δ at q=0;  
- Collective excitations: spin waves 
 

Magnetic 
excitations in Ni 
(Δ0≈100meV) 
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Dimensionality effect 
 
 
 
 
In ferromagnets: ωk = Dk2 
 
 
 
 
 
 

At T≠0 integral is divergent for d=1 or 2 
 
è No ferromagnetism in 1 and 2 dimensions at T>0 

In AF: ωk = Ck : integral is divergent in 1 dimension  
 
 
 

 

becomes (x=Dq2/kT):  



Mermin-Wagner theorem: For Heisenberg model, no long range order 
in  1 and 2 dimensional systems at T>0 
  
-  Magnetism is possible at T=0 

-  Valid only in the absence of anisotropy 
 
Anisotropy may stabilize ferromagnetism  in 2-D systems 
 (surfaces and thin films) 
 
Mermin-Wagner theorem does not apply to Ising or XY models 
 
 
 
 

 



Heisenberg spins with anisotropy 
 
Uniaxial anisotropy:  
 
easy axis: K > 0: spin wave gap αt 0°K 
 
Variation of magnetic moment at T ≠ 0: M(T)-M(0) = NSW 
 
In 2D; no divergence of NSW: at low T:  
 
 
 
Easy plane anisotropy: K<0   
 
No spin gap; NSW is divergent at finite T. Order at T=0? 
 
 
Anisotropy may stabilize ferromagnetism  in 2-D systems 
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Ising model in 1D systems (Mermin-Wagner does not apply) 
 

   with Si= ± 1  
 
Describes many physical situations: A-B alloy,magnetic system with 
infinite uniaxial anisotropy, lattice-gas transition ….   
 
Ising chain:  

    Exactly solvable 
 
No phase transition: F=U-TS 
 
U is minimized if all spins are aligned: ↑↑↑↑↑↑↑↑↑↑ U=NJ, S=0 
 
1 defect: ↑↑↑↑↑↑↓↓↓↓ 
 
Energy cost: ΔU= 2J, ΔS= kLnΩ = kLnN ΔF=2J-kTLnN 
if T≠0, defects are alsways favored by entropy ➡︎ no order (in 2D Tc≠0) 
 
 



Examples of 2D systems:  
 
- Compounds with in-plane interactions >> interplane interactions 
 
examples: La2CuO4…… 
 
- Ultrathin films : 2d character if  - d< 2π/kF     0.2 -2 nm 

    - d<exchange length: depends on the 
     nature of exchange: 0.2 – 10 nm 

 
- Surfaces of bulk materials 
 
-  Superlattices F/NM: interlayer interactions 



Some low dimensional systems 

Li2VO(Si,Ge)O4 

cuprates 

KCuF3 
(1D) 

K2CuF4 
(2D) 



Reduction of Curie temperature 

Tc for Co thin films 
Magnetization of Ni films 

In 2D:  - no order if no anisotropy 
 

 - with anisotropy: reduced Tc 
(reduction of nb of nearest neighbors ) 

M(T) for different thickness (theory) 



From 3D to 2D behavior:  
 
- In 3D systems correlation length diverges at Tc: 
 
- Crossover from 2D to 3D when the thickness  d ≈ ξ 
 
- Asymptotic form for Tc: 
 
 

   
(Heisenberg: ν= 0.7  Ising: 0.6) 

Experimentally: ν ≈ 0.7  
Close to Heisenberg 

(Gradmann, 1993) 



Summary 
 

- Mean field approximation is easy to handle. Allows to compare 
easily different types of orderings 

- In many cases (3D systems) is gives the correct qualitative 
ground state 

- Temperature variation:  
 - at low T: spin waves 
 - Tc too large, critical exponents not correct (short      
    range fluctuations) 

 
- Mean field wrong  in low dimension systems 



Some general reference books 
S. Blundell: Magnetism in Condensed Matter (Oxford University Press, 2001) 
J.M.D. Coey: Magnetism and Magnetic materials (Cambridge University Press 
2009) 
 R. Skomski: Simple models of Magnetism (Oxford University Press, 2008) 
 
More advanced books 
D.I. Khomskii: Basic aspects of the quantum theory of magnetism (Cambridge 
University Press 2010) (in particular: Phase transitions, Landau and Ginzburg 
Landau theory, magnons) 
N. Majilis: The quantum theory of magnetism (World scientific 2007) (in 
particular Molecular field approximation, magnons 
P. Mohn: Magnetism in the solid state (Springer, 2006) (most devoted to itinerant 
magnetism; see also J. Kübler in ‘Handbook of Magnetism and Magnetic materials’, 
vol1 ) 
D.P. Landau: Phase transitions in ‘Handbook of Magnetism and Magnetic 
materials’, vol1 (Wiley 2007) 
I.A. Zaliznyak: Spin waves in bulk materials in ‘Handbook of Magnetism and 
Magnetic materials’, vol1 (Wiley 2007) 
 
 
 
 


