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Magnetism at finite temperature
Claudine Lacroix, Insitut Néel, CNRS & UJF, Grenoble

Temperature is an important parameter since exchange energies and
ordering temperatures are comparable to room temperature

Curie (Néel) temperature: 1044°K in Fe, 70°K in Eu0, 2292K in &d,
525°K in NiO (AF)

Exchange: 0.01eV = 100°K

Magnetocrystalline anisotropy: 1mK to 10K
Shape anisotropy: from 1mK to 1K (

External field: 1T = 1°K
2015
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- The Heisenberg model in molecular field approximation
- Landau theory of phase transitions
- Beyond mean field:

-Magnons (spin waves)

-Ginzburg-Landau theory

-Critical behavior

-Role of dimensionality: 1D and 2D systems
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Various microscopic mecanisms for exchange interactions in solids:
-Localized / itinerant spin systems o
-Short / long range H = —Z]ij S,-S,
-Ferro or antiferro ij

Various types of ordered magnetic structures:
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Ferromagnetic

Ferrimagnetic

Also spin glasses, spin liquids... :

Type of magnetic order depends on the interactions

no long range magnetic order



The various exchange mecanisms can usually be described by an
effective exchange hamiltonian: Heisenberg model

H = _Z]ij 5.5,
ij

Ji; can be long or short range, positive or negative

S: : classical (vector) or quantum spin

It is an interaction between spins: if the magnetic moment is given by
J instead of S (J=L+S), interaction can be rewritten as:

H=-— Z I; J..J,
ij
If J=L+S, and L+2S=g,], then, S=(g-1)Jand I, = (9-1)*J;

In this lecture: no anisotropy effect

K coefficients vary with T as M"




What is mean field approximation ?

uH

one moment in a magnetic field H,,,: M = M, g ( )
kgT

Where the function g is

- the Brillouin function (quantum case)

- or the Langevin function (classical spins)

Heisenberg model: H = ‘Z’if S,.S,

Main assumption: S, is replaced by its average (S;)

=Y 1y 5.5 = Hup = = ) J; [B).5; + ()5, - 50
ij ij

(similar to molecular field, or Hartree-Fock approximation)



N 2
Jj | \ = —ZZ]U (5,).S, + constant

\s,

J

Hur = = ) Jy [(5).5] + 5)).5.- 5.5
U]

—

field acting on ¢ due to the other spins §; :
I

h; = _ZIU (-?;)
j

If there is also an external field:

h; = _z]ij <§;> +Hext
J

Initial problem: many-body system of interacting spins

New problem: collection of spins in static local magnetic field




Mean field approximation

- mean-field
approximation

1 &1

The field created by the neighbors is static; i.e. all thermal and quantum
fluctuations are neglected. When fluctuations are small, it is a good
approximation.

Fluctuations are large

- at high temperature: near T_ (critical behavior) and above T,
(paramagnetic fluctuations)

- in low dimensional systems (1D, 2D)

- Small spin value (quantum fluctuations):effect of spin waves is more
important for small S-value

If fluctuations are large, corrections to mean field are important



The molecular field approximation

H= - 5i(Bi + Fey)
l

Each magnetic moment is in an effective field

.. + z 2], (S)) ex:l'er'nal.field + field created by the
- neighboring moments

H.
Local magnetization: M; = gug(S;) =M, g (Z ;,) (g is Brillouin or
Langevin function) F
Set of coupled equations to determine (S, ) on each site

In a ferromagnet, it becomes simple since (S, ) is uniform :

= hext +
($,)= mp = myp = mFg( th:mF) a = 22;]i




New problem: each spin is in a local field that depands on

surroundings
h; = _z]ij (S
J

Hypothesis on the nature of ground state:

Ferromagnetic state: (S)) = S, (h,) = h (uniform solution)

2 sublattices AF (S,) = +S,(h,) = +h

Helimagnets: (?;) = SeldRi (E’) — he'l(@Ri+o)

Receipe: for each solution, solve the selfconsistent equations,

calculate S, calculate the corresponding free energy, compare the
energy of the various solutions.



The molecular field approximation: ferromagnetic solution

Approximation: S, is replaced by its average <S;> =S (T)

If exchange only between nearest neighbors, h,; = h,,, +2zJS(T), (z=
number of nearest neighbors)

Simple problem: magnetic moment in a uniform field h,:

gug(hext + 2zJS(T) )) selfconsistent equation for S(T)

S(T) = SBS< T

(Bs: Brillouin function for spin S)

For Antiferromagnet: 2 coupled equations for S, and S (2 sublattices)

(if spins are considered as classical spins: Bg is replaced by Langevin
function L)



h
Solution of the mean field equation: S(T)= SB; <gﬂ3( ext + 22JS(T) ))

kT

If h,, =0
S(T)/S =y kBT/qu_B zJS
......................................... 1‘} T<Tc T>TC
S(T)/S = Bg(y)
Y = gug zJS(T)/kgT
..1 ,
At T>T.: y=0 .
At T<T.: 1 solution y,z0 Calculation of T,:

T, is obtained when y,=0

At T, S(5+1)/35 = kyT/gu; zJS

near y=0, Bg(y)=y S(5+1)/3S + ...




Ferromagnet: Order parameter and Curie temperature
25(S +1 25(S+1
ky T, = ( ) 2 ( )

z] (If only nearest neighbor
interactions J)

S

0.8

Y v
o

(S
5

06|
Magnetization is calculated

04 selfconsistently

§=5
S=
02 Underlying Brillouin Functions:

S = 1/2: Hyperbolic tangent
S = . Langevin function

2T
At low T: M(T) — My « exp (— =" ¢/..)

Spontaneous magnetization (normalized)

0oL

1 1 1 1 1 1
04 0.6 0.8 1.0

Temperature f/Tc Near Tc: M(T) o< (TC _ T) 1/2

Similar calculations for antiferromagnets or ferrimagnets (2 sublattices,
2 selfconsistent parameters S, and Sy):
also with longer range interactions



Predictions of mean field theories:

-T<T,. M(T) calculated selfconsistently

- T.=22] S(S+1)/3k,

At low T: exponential decrease of S(T)
Near T.: S(T) vanishes as (T.-T)!/2 (critical exponent p=1/2)

o 0.5 1

-T>T, susceptibility: Curie Weiss law

hexe + 2ZJM(T
Calculated using M(T) = SBg <gu3( thTZ] ( D)

In the paramagnetic state: M(T)=yx h,,,. Expansion of the Brillouin function:

Curie-Weiss law: y =C/(T—T,),C=5S(S+1)/3ky (critical exponent y = 1)

In general, at T>>T, x=C/(T —6,) M X
with 6, #T,. “N T e /z '

_ T, 6,

-




- Specific heat: partition function for one spin in the effective field h

7 = e—ﬁheff/z + e+ﬁheff/2

0*F
F = —kBTLnZ,C,, = _Tﬁ
3k,/2 for 90 | | ; | |
C spin 1/2 - A i
Y RbMnF;
C 8 a N
m}/mole'1K'2 7 “\
70 .'./.’ ol 1\.“_—
Discontinuity of C, at T.: critical T
exponent a =0 ¢
1.51
- Magnetocaloric effect: ] Ni
TT, 1T 5 H<2T
>T : 8Q x ——— 8H? ,8T «x — — &6M? 5.
At T>T,: 8Q T—T.7 o T 05
At T<TC: ST x i SM? 200 00 40 50 60 70 800
CM Temperature, T (K)



Generalization to describe more complex models: antiferromagnets,

ferrimagnets, ....

Crystal field effects

Comparison with experiments: qualitatively correct but:

- Mean field T, generally too large

- Deviations at low T: M(T)/M,=1-AT3*? (ina
= 1-AT? ( in antiferromagnet)

- Deviations near T.:

M(T)/M, = (Tc-T)# with < 0.5

- Deviations above T_:

x(T) a (T -T)Ywithy>1
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Mean field magnetization for antiferro, ferrimagnets:..

Several sublattices: A, B, C ...

Molecular field on each sublattice created by the neighbors H,, H;....
HA: aMA + bMB +...

M, =B, (gu(H +H +)/KT), Mg= Bg (gu(Hgz+H,,:)/kT)

—
=
-
P
=
=

T T T T T T T T T T
Two-sublattice ferromagnet 1

One-
sublattice

Net magnetization (arb. units)
Net magnetization (arb. units)

(Compensated)
ferrimagnet

Temperature Temperature



Advantages and limitations of mean field approximations

-Simplicity

-Simple calculations of thermodynamic properties

-Various magnetic order: ferro, ferri, AF, helimagnets
-Anisotropy can be taken into account

-1st step to investigate a model.

-Powerful method, can be applied to many problems in physics

But it is necessary to compare various mean field solutions

-At low T: M(T) - M, ~ exp(-A/KT) instead of T¢ (a=2 or 3/2): possible corrections if
spin waves are included

-Near T, : critical exponents are not correct

-Overestimation of T,

-Absence of magnetism above T, (short range correlations are not included)
-Dimensionality effects are not described: absence of magnetism for d=1, T, = O
for d=2 (Heisenberg case)- In MF T_ is determined by z only
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Estimation of T,

Mean field: kT, = 22T S(S+1)/3k; for Heisenberg model
zJ for Ising model

Real T, is always smaller (even O for some models)

T. for the Ising model:

Table 5.2 Exact and approximate Curie temperatures for the Ising
model (in units of zJ/kg).

lattice d z mean-field Oguchi exact
linear chain 1 2 1 0.782 0.000
square 2 4 1 0.944 0.567
simple cubic 3 6 1 0.974 0.752
bee 3 8 1 0.985 0.794
fee 3 12 1 0.993 0.816

Mean field is better if z is large!




Outline

- The Heisenberg model in molecular field approximation
- Landau theory of phase transitions
- Beyond mean field:

-Magnons (spin waves)

-Ginzburg-Landau theory

-Critical behavior

-Role of dimensionality: 1D and 2D systems



Landau expansion for 2" order phase transition

Free energy near T, can be expanded in powers of M:

1 2 1 4 1 6
F(M,h,,, T) =F, +EaM +ZbM +ECM e —Mh,,;

M) por 1ot - a, b and ¢ can be calculated for each
model (Heisenberg, Hubbard.... )

I<Te - They depend on the microscopic
\ / parameters: J;, U, band structure...

\ M
\/\/ - They depend on temperature

= magnetization, specific heat, susceptibility above T, can be obtained
from F(M,H,T)




Different situations depending on the coefficients (c >0)

1 2 1 4 1 6
F(M,h,,,, T) =F, + EaM + ZbM + ch +-- —Mh,,,

Magnetization for h,_,=0 is determined by : RM) 1y, 1er,

M(a+ bM? + cM*) =0

I<Te

1) a>0, and b2 -4ac <0: M =0 . y
(no magnetic order)

2) a <0 (and b% -4ac »0): Mz 0
== T. is determined by a(T))=0 = a=aq,(T-T,)
And M(T) = (a,/b)!/2 (T_-T)!/2
Above T.: if h,.,2 0, h., =aM

=> Curie Weiss law: M/h,,, = 1/a, (T-T,)



M(a+ bM? +cM*) =0

a > 0 and b2 -4ac >0 : 1st order transition is possible

F}M)

T<T,

T>T,

T<T,: 2 minima M=0 and M=m; F(m) > F(O) === stable minimum for M=0
T=T,;: F(m)=F(0)

T<T,: 2 minima but F(m)<F(0) ™= stqble solution M= m

T<T, : 1 minimum m (a changes sign at T,)

Transition occurs at T; (> T.) - 2 minima for T _<T<T,
Hysteresis for T <T<T,



1st order transition under magnetic field: metamagnetism

Occurs if a > O and b2 -4ac >0

1 2 1 4 1 6
F(M, hext, T) - FO +_aM + _bM + _CM + ..... _Mhext
. 2 4 6
© B g
= YCoz T=10K /;.«":/
Hex=H %:Sl 04 ”c
::: lIII
L TN . § L ‘n||
Z f
__/Hext :ch E9 o2 ///
Hext | -
. 7/ He 020' 1‘0 %0 60 %00
o : * ..... / H¢; ) 06: /}7‘/_
3 é . [ LuCoz T=8 K ;. ||‘
:‘g o4 ||l IlI
;é 09: .‘J v".'
: 02 _ ./j,/.
This may occur if the Fermi level is located | ........— |
0 20 a0 & 80100

in a minimum of DOS

Magnetic Field (T)




Thermodynamic properties within Landau theory

1 2 L 4 B 6
F(M,hext,T)ZFO +EClM +ZbM +ECM e _Mhext

If a =0o (T-Tc)

Near To: M o (T-T )2 (T<T.), x o< 1/((T.-T) (T>T,)

Specific heat jump at T.: a,T /b Critical exponents

At T, M o< h 173 p=%v=1a=0, 8=3
= Mean field exponents

1st order transition: discontinuity of M, susceptibility, specific heat
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Improving the mean field approximation: Ginzburg_Landau theory

In Landau theory M(T) =0 at T>T,
But near T, large fluctuations of M (<M> = 0 , but <M?>20)

Ginzburg-Landau theory: takes into account spatial fluctuations of M
M 2> M(r)

Ginzburg-Landau free energy:

1 1 1
F(M,h,,,T) — Fy = j f d3r (E aM(r)? + 7bM()* ++5 glvM@)|” - M(r)hext)

If M(r)=My+m(r) with m(r)<<M,,

AF = ) (ga® + a+ 3bMo?)|m,
q+0



Why a (VM)? contribution?

If variation of M(r) is « smooth »: \ /
>

55, = S? cos (6, - 6;) » S¥(1 - (6, - 6))%/2)
Contribution to exchange energy: ' )

J(R,—R;)S? (8,-6,)%2 = A (06/0x)? in the continuum limit
If M(r) = M, (cosB(x), sin 8(x), 0) (1D model)

=» VM = M, d0/9x (-sin0(x), cos 0(x), 0) and (VM)? = M, 2 (30/0x)>
The (VM)? is justified if spatial fluctuations are small

Fourier transform: M(r) = Z M(q)eltr = VM(r) = z gM(q)eld”
q q



Improving the mean field approximation: Ginzburg_Landau theory

In Landau theory M(T) =0 at T>T,
But near T, large fluctuations of M (<M> = 0 , but <M?>20)

Ginzburg-Landau theory: takes into account spatial fluctuations of M
M 2> M(r)

Ginzburg-Landau free energy:

1 1 1
F(M,h,,,T) — Fy = j f d3r (E aM(r)? + 7bM()* ++5 glvM@)|” - M(r)hext)

If M(r)=My+m(r) with m(r)<<M,,

AF = ) (ga® + a+ 3bMo?)|m,
q+0



Additional contribution to the free energy AF = Z(ng +a+ 3bMy?)|m, |’
q*0

— contribution to susceptibility, specific heat ..
pTIDTATY. Sp AC, o< (T-T,)2

Correlation length §

kT with £o gT, (Orstein-Zernike

2
(my|") Z+1/2 T—T, Critical exponent v=1/2)

in real space: (m(r).m(r')) < exp(— (r — r')/§)
Small q fluctuations are large

q=0 fluctuations and correlation length diverge at T,

0.8 +

¢ can be
measured with
neutrons

0.6

=

04+

0
Mo [B]

024

0.0

0 1 2 3 4 5
wavevector Kk [arb. units]




Landau Ginzburg: spatial fluctuations (Landau Lifhitz Gilbert: dynamic)
Valid only if : 1>>|T-T_|/T. >> AT_2 (Ginzburg criterion)

Near T_: better description of critical behavior.

mmmmm) Description of phase transitions: sophisticated techniques
(renormalization group) - Universality of the critical behavior at 2nd
order phase transitions

Define the order parameter M
if + = (T-Tc)/Tc, and h = yH/kTc

values in M. F. approximation

M(T) ~ tb (h=0) p=1/2
M(h) ~ h!/3 (+=0) d=3
X(T) ~ v y=1
(T) ~

C(T) ~ t-a a=0

s(k) ~ k-2*n (+=0)
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Magnetic transition is an example of phase transitions

pressure

-Liquid-solid transition: spontaneous
symmetry breaking at T,
critical -Order parameter (spatial)

point
-A liquid has more symmetries than a solid:

complete translational and rotational invariance

Gas
» -Para-ferromagnetic transition is similar
temperature
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Different types of phase transitions:

Phenomenon High T Low T Order Excitations Rigidity Defects
Phase Phase parameter phenomenon
crystal liquid solid PG phonons rigidity dislocations,
grain
boundaries
ferromagnet paramagnet ferromagnet M magnons permanent domain walls
magnetism
antiferromagnet paramagnet antiferromagnet M (on magnons (rather subtle) domain walls
sublattice)
nematic liquid oriented Sis= (%(3 cos? 6 — 1)) director various disclinations,
(liquid crystal) liquid fluctuations point defects
ferroelectric non-polar polar P soft ferroelectric domain walls
crystal crystal modes hysteresis
superconductor ~ normal metal ~ superconductor [ ]ef® - superconductivity flux lines




Critical exponents

they depend on
-the model (Heisenberg, X-Y, Ising..)
- the dimensionality of the system

M(T) o<(T - T)P , cox(T) o<(T - T¢) Y

o No ordering 0-36, 1.39
= 1/2
Kosterlitz- B B= 1
Thoul '
Pt | 035,132
To=0 118,714 | 0.32,1.24
X~ exp(-alT) ! R

a+2p +vy=2 ;,Dv=2-a



Critical exponents

they depend on
-the model (Heisenberg, X-Y, Ising..)
- the dimensionality of the system

M(T) o<(T - T)P , cox(T) o<(T - T¢) Y

D=1 D=2 D=3 Mean field

Heisenberg

No ordering 0-36, 1 -39
=1/2
Kosterlitz- B B= 1
Thoul Y
e exoat) | 0-351.32
el 8,74 | 0.32,1.24
X~ exp(-alT) ’ L, 1.

Deviations from mean field indicate short range correlations near T,



Comparison with experiments

o

Mean field Experiment 2DIsing 3DIsing 3D Heisenberg
x(Mx(T—=Tc)Y | 1.3-14 7/4 1.24 1.39
M(T) < (Tc— T)ﬂ 1/2 ~1/3 1/8 0324 0.362
CNHx|T-Tc|™™ 0 —0.1-0.1 log 0.110 —0.115
M(B,T =Tc) x |B|'/® 3 a5 15 4.82 4.82

Critical exponents depend on the dimensionality

d [MONOLAYERS)

(K. Baberschke)

.40 r T T Bl
P [ _0365 (3D-Helsenberg) e
35 l
| _ 0325 (3D-Isingl s ——T__ ——— =]
30 o
.25 )
.20
AS
___.___.:./ 0125 (20-1sing) __ ____ P
.10 A 2 A 1 s L A £
o 4 8 12 16 20 @

critical exponenent p in thin Ni films on W:

- at 6 monolayers transition from 2- to 3-
dimensional behavior
- crossover from Ising to Heisenberg due to

anisotropy
(K. Baberschke)
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Improving mean field at low T: spin waves

1 dimensional model with ferromagnetic nearest neighbor exchange
H=-2)]58u=-2] ) S8, —1(2 St St +szsi++1>
i i i

6round state: T T T T T Energy: -NJ/2

Excited state

with 1 reversed spin TTiTT I(\le?;‘e:x‘rs\*z;genir;s_fgri ;fsfl:

Y.: wave function with spin reversed on site i

_ _ = The spin flip will propagate
-] (Z Si Siv1+Si Szr+1> on sites i-1 and i+1
i

Hy, = -JW;_; + ¥..1) + (-NJ/2 +J) ¥,



Hy = -JW,_; + ¥..;) + (-NJ/2 +J) ¥,
Fourier transform: ¥(q) = X exp(iqR;) ¥,
H ¥Y(q) = -NJ/2 ¥(q) + J(1-cosqa) ¥(q)

This is an eigenstate (no longer true for states with more spin flips)

Excitation energy: E(q) = J(1-cosqa) ® Ja?/2 q?

Low energy excitations \ I
| YYTYVYTYY
> |\ | o« <

B Kb o &

Energy, €

—— (§$;.5;.1) < cosqa
Wavevector, g



« Classical » spin waves
Local field h. on each site: h.= J(m._; + m..,)

Moment on site i: precession in field h,

dm;/dt = -ym,xh, (y gyromagnetic factor)

dm/dt = -yJ mx(m;_; + m;,)

1. Fourier transform (time and space) = m(t) = m, eiv! eldR
2. Linearization of dm/dt
3. Similar to previous approach w(q) = yJ(1-cosqa)



Spin waves in antiferromagnets

:_221 Siv1 = ZIZSZ . (25+S:+1+S 51+1)

»L T l T l T l Not an eigenstate

Si Siv1 +Si Sin

2 T

T
More complicated calculations A

E(q) = Jlsinqal

antiferromagnet

. ferromagnet

9x



Examples of spin wave spectra
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3

Magnon energy, ho (meV)
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Magnons: low T properties
In ferromagnets:at low k: E(k) =zJM S(ka)? = k?
In antiferromagnets: E(k) = zJM ka

Magnetization at low T : M(T) = M, - number of excited magnons

1
Magnons obey Bose-Einstein statistics Nsw = Z< ng >= Z SE)/T 4
k k -

(S) ~ S — Z npg(wk) Z_> /dkd - /dk (é'r)“

k k

At low T, in 3D systems: for a ferromagnet: M(T) = M, — A(kgT/D)3/?

for AF (sublattice magnetization): M(T)= M, - B(kT/C)?

(mean field exp(-A/kyT))



Estimation of T, from spin waves:

<AS'> ~ AS' i Z n}))(W‘k:l

k

T, is determined by, <S> =0 — value for T, smaller by a factor 10
compared to mean field (2zS(S+1)/3kg)

Specific heat: magnons contribute to energy

AE = ¥ w, ng(w,) — C, o< T2 (Ferro) or T (AF)
(mean field: exp(-A/kgT))



Spin waves also exist in itinerant

ferromagnets: B

2 types of excitations: E(

- Stoner excitations: transition from a Z§i§
filed T state to an empty | state: N, () < ' - N (B)

gap A at q=0;
- Collective excitations: spin waves

200

1501
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CONTINU U M excitations in Ni
(Ay*100meV)

unllmmllj)’u) oL’
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Outline

- The Heisenberg model in molecular field approximation
- Landau theory of phase transitions
- Beyond mean field:

-Magnons (spin waves)

-Ginzburg-Landau theory

-Critical behavior

-Role of dimensionality: 1D and 2D systems



Dimensionality effect

[

' ‘ .d __ -
Sy =~ S — E ng(wk) z 5 /dl‘ ~ /dl“ (27)4
- . . _

k

In ferromagnets: w, = Dk?2

xd/2-1

d—1
q
b =Dq?/kT): Td/zf d
fexp(DqZ/kBT) -1 ecomes (x=Dqg ) exp(x) — 1 x

At Tz0 integral is divergent for d=1 or 2
= No ferromagnetism in 1 and 2 dimensions at T>0

In AF: w, = Ck : integral is divergent in 1 dimension



Mermin-Wagner theorem: For Heisenberg model, no long range order
in 1 and 2 dimensional systems at T>0

- Magnetism is possible at T=0
- Valid only in the absence of anisotropy

Anisotropy may stabilize ferromagnetism in 2-D systems
(surfaces and thin films)

Mermin-Wagner theorem does not apply to Ising or XY models



Heisenberg spins with anisotropy

,2
Uniaxial anisotropy: —KS;

easy axis: K > O: spin wave gap at 0°K  g(k) = 2S[J(0)_J(q)+ K]

Variation of magnetic moment at T z 0: M(T)-M(0) = Ngy

, A
In 2D: no divergence of NSW: at low T: Ngy « Texp(—;)

Easy plane anisotropy: K<0  g(k)= J Dk*(Dk* +2/K| x k

No spin gap: N, is divergent at finite T. Order at T=0?

Anisotropy may stabilize ferromagnetism in 2-D systems




Ising model in 1D systems (Mermin-Wagner does not apply)
HZ_ZJijSi Sj with S;= + 1
ij

Describes many physical situations: A-B alloy,magnetic system with
infinite uniaxial anisotropy, lattice-gas transition ....

N—1
Ising chain: H — — Z Ji Si Sii Nl J:
i=1 Exactly solvable 4n(T)= 2" [ ] cosh (I\B_T)

i=l
No phase transition: F=U-TS
U is minimized if all spins are aligned: T T 11T 1T 1T 1111 U=NJ, 5=0

1defect: TTT1TTT1111

Energy cost: AU= 2J, AS= kLnf2 = kLnN AF=2J-kTLnN
if T20, defects are alsways favored by entropy = no order (in 2D T z0)



Examples of 2D systems:

- Compounds with in-plane interactions >> interplane interactions
examples: La,CuO,......
- Ultrathin films : 2d character if -d<2w/k. 0.2 -2 nm

- d<exchange length: depends on the
nature of exchange: 0.2 - 10 nm

- Surfaces of bulk materials

- Superlattices F/NM: interlayer interactions



Some low dimensional systems

HeBa,Cu0,.. Y2a.CuD,.. La;,S4,CuC, TL8a,Cu0,..
(Hgt201) (YBCO) LSCO) (T12201)

'),, 1’ ')‘) 1‘, ‘)‘,
Ao
. A . 7
')" )’ ')’ ",, 3’
‘)’ ‘)’ ‘)’ ‘)’ ‘)‘)

Li,VO(Si,Ge)O,

cuprates

KCuF;
(1D)




Reduction of Curie temperature

150 [ ' e
bulk Co o5k Re(ooon |
f°1000: .‘.M_ . ;
e . S o3k 2
E - g ’ 3.8
el d
:g 500 -
S R L e
S e e Magnetization of Ni films
T, for Co thin films
1.005 [~
In 2D: - no order if no anisotropy 1
0.995
- with anisotropy: reduced T, m "7
0.985

(reduction of nb of nearest neighbors )

0.98

0975 |

0.97

0 0.1 0.2 0.3 0.4 0.5 0.6

M(T) for differenfthickness (theory)




From 3D to 2D behavior:

T—T, ™"
- In 3D systems correlation length diverges at Tc: ¢ = & T
C
- Crossover from 2D to 3D when the thickness d = ¢
- Asymptotic form for Tc: _1
T¢() —Te(d) (d) v
T:(d) $o
(Heisenberg: v= 0.7 Ising: 0.6)
10 e
08l & e Re(000)/Ni(11) . o
8 oel o Culftt)/Ni Felt)/Culti) Experimentally: v= 0.7
i | a WIN0)/Ni(111) Close to Heisenberg
=04 x Cul111)/Ni (111)
= 02 ° W(110)/Fe(110)/Ag
o T 2100' I

(Gradmann, 1993)




Summary

-Mean field approximation is easy to handle. Allows to compare
easily different types of orderings

-In many cases (3D systems) is gives the correct qualitative
ground state

-Temperature variation:
- at low T: spin waves
- T, too large, critical exponents not correct (short
range fluctuations)

- Mean field wrong in low dimension systems



Some general reference books

S. Blundell: Magnetism in Condensed Matter (Oxford University Press, 2001)
J.M.D. Coey: Magnetism and Magnetic materials (Cambridge University Press
2009)

R. Skomski: Simple models of Magnetism (Oxford University Press, 2008)

More advanced books

D.I. Khomskii: Basic aspects of the quantum theory of magnetism (Cambridge
University Press 2010) (in particular: Phase transitions, Landau and Ginzburg
Landau theory, magnons)

N. Majilis: The quantum theory of magnetism (World scientific 2007) (in
particular Molecular field approximation, magnons

P. Mohn: Magnetism in the solid state (Springer, 2006) (most devoted to itinerant
magnetism; see also J. Kiibler in ‘Handbook of Magnetism and Magnetic materials’,
voll )

D.P. Landau: Phase transitions in ‘Handbook of Magnetism and Magnetic
materials’, voll (Wiley 2007)

I.A. Zadliznyak: Spin waves in bulk materials in ‘Handbook of Magnetism and
Magnetic materials’, voll (Wiley 2007)




