Controlling magnetism with light

Andrei Kirilyuk

Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 0 mm

Ultrafast Magnetism Conference UMC 2015 Nijmegen, the Netherlands October 19-23 2015

The submission of abstracts is extended until July 1

The selected papers will be published by Springer in the series "Springer Proceedings in Physics"

The instructions for abstract submission and key dates can be found online

http://www.ru.nl/ssi/umc-october-2015/

Magnetic recording – searching for options

Other options:

- Bit Patterned Media
- Microwave-Assist
- Two-Dimensional

_ _ _ _ _

Time-scales and stimuli in magnetism

Experimental know-how: time-resolved pump-probe setup

What you need: a femtosecond laser

	Model	Model	Model
	TISSA20	TISSA50	TISSA100
Pump Power ¹⁾	3-5 W	3-7 W	5-10 W
Output Power at	150 - 250	150-500 mW	>10%
800 nm	mW		efficiency
Pulse Duration ²⁾	<20 fs ³⁾	< 50 fs	<100 fs
Tuning Range	800 ± 20	740 - 950	720 - 980
	nm	nm ⁴⁾	nm ⁴⁾
Repetition Rate	70 - 140 MHz		

lots of choice!

Interferometric autocorrelation function of 16 fs pulse obtained with external group velocity dispersion compensation

Stroboscopic magneto-optical pump-probe setup

Part 1: classification of laser-induced effects

Part 2: the story of one experiment

Effects of the laser pulse: classification

I. Thermal effects: change of M is a result of change of T

Laser-induced collapse of magnetization

Beaurepaire et al, PRL 76, 4250 (1996)

Energy transfer: time scales

ESM Cluj Napoca - August 2015

12

3T model and derivatives

$$\begin{split} &C_{e}d(T_{e})/dt = -G_{el}(T_{e}-T_{l}) - G_{es}(T_{e}-T_{s}) + P(t) \\ &C_{s}d(T_{s})/dt = -G_{es}(T_{s}-T_{e}) - G_{sl}(T_{s}-T_{l}), \\ &C_{l}d(T_{l})/dt = -G_{el}(T_{l}-T_{e}) - G_{sl}(T_{l}-T_{s}), \end{split}$$

microscopic 3-temperature model

Radboud University

14 ESM Cluj Napoca - August 2015

Ultrafast laser-induced demagnetization - once again

Beaurepaire et al. PRL **76**, 4250 (1996)

Stamm et al. Nature Mat. 6, 740 (2007)

Energy- and angular momentum transfer

16

Magneto-optics??

Effect of "bleaching" or "state blocking"

Koopmans et al, PRL 85 (2000) 844

Non-equilibrium electron population

Lisowski et al, Phys. Rev. Lett. 95, 137402 (2005).

Superdiffusive spin transport

Battiato et al., Phys. Rev. Lett. 105, 027203 (2010)

Local dynamics vs spin transport

D. Rudolf et al., Nat. Comm. (2013)

Laser effects 2: excitation of precession

Ju et al., PRL **82**, 3705 (1999) van Kampen et al, PRL **88**, 227201 (2002)

Laser effects 3: phase transitions

TmFeO₃

2 3 Photo-induced birefringence $\left[\mathbf{S}_{1} \times \mathbf{T}_{ex} \right]$ T_{ex} $[\mathbf{S}_1 \times \mathbf{H}_A]$ $[\mathbf{S}_2 \times \mathbf{H}_A]$ 0 1 2 3 4 5 6 7 8 10 20 30 40 50 60 70 Time delay (ps)

Kimel et al., Nature 429, 850 (2004)

Laser effects 3: phase transitions

Ju et al, PRL **93**, 197403 (2004) Thiele et al, APL **85**, 2857 (2004)

Effects of the laser pulse: classification

I. Thermal effects:

change of M is a result of change of T

II. Nonthermal photo-magnetic effects: based on photon absorption

Photo-magnetic effects in magnetic garnets

Radboud University

Photomagnetic excitation of precession in GaMnAs

photoinduced anisotropy due to a change in the number of holes near the Fermi level

Hashimoto et al, Phys. Rev. Lett. 100, 067202 (2008)

Effects of the laser pulse: classification

I. Thermal effects:

change of M is a result of change of T

II. Nonthermal photo-magnetic effects: based on photon absorption

III. Nonthermal opto-magnetic effects: do not require absorption

Faraday effect – reminder

Two circularly polarized waves with different refractive indices:

 $E_x = \pm i E_y$ $\sqrt{\varepsilon_0} \pm \frac{1}{2} \frac{\varepsilon_{xy}}{\varepsilon_0}$ $n_+ \cong \lambda$ \vec{E}_{out} E_{+} E_{\perp} EE α_F +÷ $2\pi l \epsilon_{xy}$ Faraday rotation: α_{F}

M. Faraday, On the magnetization of light and the illumination of magnetic lines of force, Phil. Trans. R. Soc. Lond. 136, 104 (1846).

 E_{in}

Inverse Faraday effect

$$\Phi = \varepsilon \varepsilon_0 E(\omega) E^*(\omega)$$

$$H(0) = -\frac{1}{\mu_0} \frac{\partial \Phi}{\partial M(0)} = -\frac{\varepsilon_0}{\mu_0} E(\omega) E^*(\omega) \frac{\partial \varepsilon}{\partial M}$$

$$\hat{\varepsilon} = \begin{pmatrix} \varepsilon_{xx} & -i\alpha M & 0 \\ +i\alpha M & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} + O(M^2) \end{pmatrix}$$

Inverse Faraday effect

$$\vec{H}(0) = \frac{\varepsilon_0}{\mu_0} \alpha \left[\vec{E}(\omega) \times \vec{E}^*(\omega) \right]$$

Pitaevskii, *Sov. Phys. JETP* **12**, 1008 (1961). van der Ziel *Phys. Rev. Lett.* **15**, 190 (1965).

Inverse Faraday effect

Effect for opposite pulse helicities

Hansteen *et al.*, PRL **95**, 047402 (2005); Phys. Rev. B **73**, 014421 (2006). equivalent to a 100 fs magnetic field pulse of some 0.5–1 Tesla!

$$\vec{H}(0) = \frac{\varepsilon_0}{\mu_0} \alpha \left[\vec{E}(\omega) \times \vec{E}^*(\omega) \right]$$

$$H_{IFE} \sim 0.1 - 100$$
 Tesla

Works everywhere! (almost)

J. Keckes et al., Nature Materials 2, 811 (2003).

Microscopic mechanism of the inverse Faraday effect

Stimulated Raman scattering on magnons (2-photon process)

light helicity (= angular momentum) is also conserved!

Energy- and angular momentum transfer II

Effects of the laser pulse: summary

I. Thermal effects:

change of M is a result of change of T

II. Nonthermal photo-magnetic effects: based on photon absorption

III. Nonthermal opto-magnetic effects: do not require absorption

I + III = Controlling the route of the phase transition

(a) t = 3.7 ns, E = 4.3 µJ

de Jong et al, Phys. Rev. Lett, 108, 157601 (2012). + Viewpoint in Physics.

II + III = sub-picosecond switching

Hansteen et al., PRL 95, 047402 (2005).

Part 1: classification of laser-induced effects

Part 2: the story of one experiment

Story of one experiment

Kimel et al, Nature 435, 655 (2005)

Stanciu et al, PRL 99, 047601 (2007)

Starting point: scanning across the sample (GdFeCo)

Stanciu et al, Phys. Rev. Lett. **99**, 047601 (2007); see also:

Mangin et al, Nature Materials **13**, 286 (2014); Lambert et al, Science **345**, 1337 (2015)

Cumulative or single shot??

Stanciu et al, Phys. Rev. Lett. 99, 047601 (2007)

Questions:

intensity dependence?

time scale of the reversal?? fs, ps, ns, ms???

the role of the sublattices??

Samples 1: ferrimagnetic alloys GdFeCo and similar

Samples 2: Gd/FeCo multilayers

For example:

Features of the sample:

- ✓ not an amorphous alloy
- ✓ 39 magnetic interfaces
- ✓ out-of-plane magnetic anisotropy
- ✓ existence of a magnetization compensation temperature T_M around 150K

Static magneto-optical characterisation

Intensity threshold for helicity-dependent switching

Radboud Universit

30 µm

0.25

LC LP RC

0.26

MCD vs Faraday effect

Radboud University

Another proof of the intensity dependence

Le Guyader et al., Nature Comm. 6, 5839 (2015)

Time dependence is also different

Setup for time resolved study of the switching

Single shot magnetic imaging

Intensity data:

Typical experimental data

Magnetization dynamics, T<T_M, H_{ext}=0

Reversal via a non-equilibrium state

Vahaplar et al., Phys. Rev. Lett. 103, 117201 (2009)

Time of the reversal

Switching time vs T: the role of compensation

Vahaplar et al., Phys. Rev. Lett. 103, 117201 (2009)

The role of the compensation point - 2

Vahaplar et al, PRB 85, 104402 (2012)

It works in the broad vicinity of the compensation temperature

see also: Mangin et al, Nature Materials **13**, 286 (2014)

How will the dynamics change in an external field?

Magnetization dynamics:

reversal + precession

Radboud University

Spatially resolved magnetization dynamics

Strongly inhomogeneous magnetization dynamics

- \checkmark precession with high amplitude
- \checkmark oscillating part shrinks with time
- ✓ linear velocity of the shrinking is 30km/s

Magnetization is not destroyed!

Yu. Tsema, M. Savoini et al, to be published

Shrinking of the oscillating part

Calculations of the effective damping for a ferrimagnet

F. Schlickeiser et al., PRB 86, 214416 (2012)

Yu. Tsema, M. Savoini et al, to be published

Sublattices: different behavior??

Thermal excitation of the exchange mode

Mekonnen et al, PRL 107, 117202 (2011)

heating leads to a decoupling of the substrates??

Dynamics of sublattices

Fe: 100±23 fs 100 normalized XMCD (%) Gd 50 000 0 -50 Gd: 427±102 fs Fe ∞ -100 00 0 -1 2 n pump-probe dela (ps)

ferri-magnet turns ferro!

Radboud University

Radu et al., Nature **472**, 205 (2011)

Atomistic simulations

- Iocalized atomistic spin model with a Heisenberg exchange for two sublattices
- exchange parameters (Fe-Fe, Gd-Gd, and Fe-Gd) obtained by fitting static M_{Fe,Gd}(T) dependencies.
- the usual stochastic term added to the effective field

$$\frac{d\mathbf{s}}{dt} = \gamma [\mathbf{s} \times (\mathbf{H} + \zeta)] - \gamma \lambda [\mathbf{s} \times [\mathbf{s} \times \mathbf{H}]]$$
$$\langle \zeta_{\alpha}(t) \zeta_{\beta}(t') \rangle = \frac{2\lambda T}{\gamma \mu_0} \delta_{\alpha\beta} \delta(t - t')$$

magnetic field can be present during the process

Scubic et al, JPCM **20,** 315203 (2008); Ostler et al, PRB **84**, 024407 (2011)

Dynamics of sublattices

Radu et al., Nature 472, 205 (2011)

Thermal excitation of the exchange mode

Mekonnen et al, PRL 107, 117202 (2011)

heating leads to a decoupling of the substrates??

Longitudinal relaxation in multi-sublattice magnets

see Mentink et al., Phys. Rev. Lett. 108, 057202 (2012); Kirilyuk et al, Rep. Prog. Phys. 76, 026501 (2013)

$$\frac{dS_1}{dt} = \lambda_e \left(H_1 - H_2 \right) + \lambda_1 H_1$$

$$\frac{dS_2}{dt} = -\lambda_e (H_1 - H_2) + \lambda_2 H_2$$

where
$$S_i = M_i / \gamma_i$$

and
$$H_i = -\delta W / \delta S_i$$

exchange

 $\lambda_e(T) = \lambda_e(J_{12}(T)) \qquad \lambda_i(T) \sim T/T_C$

conservation Stot

$$\frac{dS_1}{dt} = -\frac{dS_2}{dt}$$

Bloch relaxation

$$dS_i/dt = -S_i/\tau_i \qquad \lambda_i \propto \frac{2}{\tau_i} = \chi_i/\lambda_i$$

Temperature-dominated regime

$$\lambda_i >> \lambda_e$$

interaction with the environment

$$\frac{dS_1}{dt} = \lambda_e (H_1 - H_2) + \lambda_1 H_1$$
$$\frac{dS_2}{dt} = -\lambda_e (H_1 - H_2) + \lambda_2 H_2$$

Bloch relaxation $dS_i/dt = -S_i/\tau_i$

$$\tau_i = \chi_i / \lambda_i$$

$$\tau_i = \mu_i / (2\alpha_i \gamma k_B T)$$

Dynamics scales with magnetic moment $\mu_2 < \mu_1 \Rightarrow \tau_2 < \tau_1$

Brown 1963, Kubo 1970

small magnetic moments change faster → less angular momentum to be transferred

Exchange-dominated regime λ

$$\lambda_i << \lambda_e$$

interactions between the sublattices

$$\frac{dS_1}{dt} = \lambda_e (H_1 - H_2) + \lambda_1 H_1$$
$$\frac{dS_2}{dt} = -\lambda_e (H_1 - H_2) + \lambda_2 H_2$$

$$s_1$$

$$\Rightarrow \frac{dS_1}{dt} = -\frac{dS_2}{dt}$$

In this approximation, the total angular momentum is conserved

Crossover from temperature- to exchange-dominated

derived in Mentink et al., PRL 108, 057202 (2012);

see Rep. Prog. Phys. 76, 026501 (2013) for all details

Complete picture – phase diagram

see Mentink et al., PRL **108**, 057202 (2012) for all details

Is this switching universal?

Radboud Universit

Field-free switching: out-of-plane and in-plane

Ostler et al., Nature Commun. **3**, 666 (2012)

Towards applications 1: nanostructure the sample

Various sizes: 50 micron down to 200 nm

Savoini et al, Phys. Rev. B 86, 140404 (2012)

More energy-efficient at small sizes

Radboud University

73 ESM Cluj Napoca - August 2015

Towards applications 2: focus hard

Various topologies of the written domain

Finazzi et al, Phys. Rev. Lett. **110**, 177205 (2013)

Radboud Universit

Towards applications 3: focus even harder

T.M. Liu et al, accepted in NanoLetters

Reproducible switching of 40 nm bit!

with light pulse

T.M. Liu et al, accepted in NanoLetters

Resonant soft X-ray diffraction at LCLS, Stanford

Graves et al, Nature Mat. 12, 293 (2013)

Different temporal and spatial behavior of Gd and Fe

Spin transfer currents at ~10 nm distances

Graves et al, Nature Mat. 12, 293 (2013)

Answers

intensity dependence?

time scale of the reversal?? fs, ps, ns, ms???

Summary:

- temperature can switch the exchange 'on' and 'off'
 heat-induced reversal is driven by the exchange-mediated conservation of angular momentum
 on nanoscale, the process is very complicated and needs further study
 no magnetic field is required at
 - any stage reversal by each pulse

