Spin-orbit effects in transport and magnetism:

Relativistic spintronics with ferro, antiferro, and paramagnets

Tomas Jungwirth

Univ. of Nottingham, UK

Inst. of Physics, Prague Czech Rep.

Outline

- 1. Relativistic QM, magnetism, and spintronics with ferro, antiferro, and paramagnets
- 2. Reading spin information
- 3. Writing spin information

Relativistic quantum mechanics

Dirac equation (limit $v \rightarrow c$)

$$E = c\hbar \vec{k} \cdot \vec{\sigma}$$

Spin = angular momentum

 $s_i = \frac{\hbar}{2}\sigma_i$

Spin & charge \rightarrow magnetic moment

$$\vec{m} = \mu_B \vec{\sigma}$$
 $\mu_B = \frac{|e|\hbar}{2m} e^{-\frac{e}{charge}}$

Relativistic quantum mechanics

Dirac equation (limit $v \rightarrow c$)

$$E = c\hbar \vec{k} \cdot \vec{\sigma}$$

Spin-orbit coupling

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$s_i = \frac{\hbar}{2}\sigma_i$$

Spin & charge \rightarrow magnetic moment

$$\vec{m} = \mu_B \vec{\sigma}$$
 $\mu_B = \frac{|e|\hbar}{2m}$

Relativistic quantum mechanics

Dirac equation (limit $v \rightarrow c$)

$$E = c\hbar \vec{k} \cdot \vec{\sigma}$$

Spin-orbit coupling

Spin & charge \rightarrow magnetic moment

 $7 \downarrow \leftarrow 1 \ltimes \rightarrow \uparrow 7 \downarrow \lor \leftarrow \longrightarrow$ Paramagnetic no spontaneous order

 $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$ Antiferromagnetic exchange coupling, order by **local** (atomistic) molecular field

Curie-Weiss law $1/\chi \sim T - \theta$

- $7 \downarrow \leftarrow 1 \checkmark \rightarrow 1 \checkmark \checkmark \leftarrow ---- Paramagnetic no spontaneous order$
- - $1 \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$ Antiferromagnetic exchange coupling, order by **local** (atomistic) molecular field

Curie-Weiss law $1/\chi \sim T - \theta$

Ferromagnetic & Antiferromagnetic: **Relativistic** coupling between spin and lattice orbitals \rightarrow magnetic anisotropy \rightarrow magnetic memory

 $\pi \downarrow \leftarrow \uparrow \ltimes \rightarrow \uparrow \pi \downarrow \lor \leftarrow \longrightarrow$ Paramagnetic no spontaneous order

- $\uparrow \downarrow \uparrow \downarrow \uparrow$ Antiferromagnetic exchange coupling, order by **local** (atomistic) molecular field

Curie-Weiss law $1/\chi \sim T - \theta$

Ferromagnetic: Memory, large net magnetic moment sensitive to magnetic fields

 \rightarrow many applications, **spintronics** one of them

Antiferromagnetic: Memory but zero net magnetic moment insensitive to magnetic fields

Paramagnetic: No memory, not very sensitive to magnetic fields

- $\pi \downarrow \leftarrow \uparrow \varkappa \rightarrow \land \pi \downarrow \lor \leftarrow \longrightarrow$ Paramagnetic no spontaneous order
 - \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \rightarrow Ferromagnetic exchange coupling, order by global uniform molecular field
 - $\downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$ \longrightarrow Antiferromagnetic exchange coupling, order by **local** (atomistic) molecular field

Antiferromagnets are interesting and useless

Nobel Lecture, December 11, 1970 LOUIS NÉEL

Antiferromagnetic (paramagnetic) spintronics:

Makes antiferromagnets (paramagnets) useful and spintronics more interesting

Let electrons with their spins move and relativistic spin-orbit coupling will take care of the rest....

Spintronics: ferromagnets

as SRAM Cache L3-L2

Spintronics: ferromagnets

Spintronics: ferromagnets

Spintronics: antiferromagnets

Loth et al. Science '12

Spintronics: antiferromagnets

Incompatible with

microelectronic chips

 $\rightarrow E_{an} * V \le room-T$

Only few magnetic atoms

Local (atomistic) control by local current

Néel State '1' — 1 nm

Loth et al. Science '12

Local (atomistic) control by global current

Microelectronic solid-state chip

Spintronics: antiferromagnets

Radiation-hard Spin not charge-based

Local (atomistic) control by global current

Microelectronic solid-state chip

Ferromagnetic and antiferromagnetic semiconductors

II-VI	FM T _c (K)	AFM T _N (K)
MnO		122
MnS		152
MnSe		173
MnTe		323
EuO	67	
EuS	16	
EuSe		5
EuTe		10

I-VI-III-VI	FM T _c (K)	AFM T _N (K)
CuFeO ₂		11
$CuFeS_2$		825
CuFeSe ₂		70
CuFeTe ₂		254

III-V	FM T _c (K)	AFM T _N (K)
FeN		100
FeP		115
FeAs		77
FeSb		100-220
GdN	72	
GdP		15
GdAs		19
GdSb		27
II-V-IV-V	FM T _c (K)	AFM T _N (K)
MnSiN ₂		490
I-II-V	FM T _c (K)	AFM T _N (K)
la=Li, Na, lb=Cu		> room T

Ferromagnet switched by electrically generated spin-polarization in paramagnet

Miron et al. Nature '11, Liu et al. Science '12

Outline

- 1. Relativistic QM, magnetism, and spintronics with ferro, antiferro, and paramagnets
- 2. Reading spin information
- 3. Writing spin information

Read-out by relativistic AMR (~ 1%)

Read-out by relativistic AMR (~ 1%)

Giant magnetoresistance Fert, Grünberg, et al. 1988

~1% anisotropic magnetoresistance

Kelvin, 1857

Spin-dependent scattering

~100% tunneling magnetoresistance

Julliere 1975, Moodera et al., Miyazaki & Tezuka 1995

Spin-dependent tunneling DOS

~100% tunneling magnetoresistance

Julliere 1975, Moodera et al., Miyazaki & Tezuka 1995

Spin-dependent tunneling DOS

Read-out by relativistic tunneling/transistor AMR (can be << 100%)

Barrier

 \rightarrow TAMR > 100 % observed

Park et al., Nature Mater. '11

Read-out by relativistic tunneling/transistor AMR (can be << 100%)

Transistor AMR in ferromagnet

Wunderlich et al. PRL '06, APL '12

M

G

Read-out by relativistic tunneling/transistor AMR (can be << 100%)

Transistor AMR in ferromagnet

Wunderlich et al. PRL '06, APL '12

M

G

Outline

- 1. Relativistic QM, magnetism, and spintronics with ferro, antiferro, and paramagnets
- 2. Reading spin information
- 3. Writing spin information

Writing by magnetic field

Ferromagnetic AMR/TMR-MRAMs

Magnetic field scales with current

 \rightarrow not scalable for high-density MRAM

Antiferromagnetic AMR/TAMR bits

Marti et al. Nature Mater. '14

Writing by spin torque

Ferromagnetic TMR-ST-MRAMs

ST scales with current density

\rightarrow high-density MRAMs

Chappert et al. Nature Mater. '07

ST in principle as efficient as in ferromagnets

No auxiliary ferromagnets needed

Zelezny et al. PRL'14, Wadley et al. arXiv '15

Writing by non-relativistic spin-transfer torque

Transfer between carrier spin angular momentum and magnetization angular momentum

Slonczewski, Berger, 1996

Writing by relativistic spin-orbit torque

Transfer between carrier linear momentum and spin angular momentum

Spin Hall effect 2004 Wunderlich et at., Awschalom et al., 2004

Inverse spin galvanic (Edelstein) effect 2004

Silov et al. APL '04, Ganichev et al. arXiv '04, Bernevig & Vafek, PRB '05, Manchon & Zhang, PRB '08, Chernyshev et al. Nature Phys.'09

Linear response I. (quantum mechanics class)

Perturbation theory: equilibrium distribution function and non-equilibrium states

$$J_{y}^{z} = \sum_{l} \langle \psi_{l}(t) | \hat{j}_{y}^{z} | \psi_{l}(t) \rangle f_{0}(\varepsilon_{l})$$

Sinova et at., RMP '15 arXiv: 1411.3249

$$|\psi_{l}(t)\rangle = |l\rangle e^{-i\varepsilon_{l}t/\hbar} + \frac{e}{i\omega} \sum_{l'\neq l} |l'\rangle \frac{\langle l'|\vec{E}\cdot\hat{v}|l\rangle e^{-i\omega t}}{\varepsilon_{l} - \varepsilon_{l'} + \hbar\omega} e^{-i\varepsilon_{l'}t/\hbar} + \cdots$$

$$J_{y}^{z} = \frac{e\hbar}{V} \sum_{\vec{k}, n \neq n'} (f_{\vec{k}, n'}^{0} - f_{\vec{k}, n}^{0}) \frac{\operatorname{Im}[\langle k, n' | \hat{j}_{y}^{z} | \vec{k}, n \rangle \langle \vec{k}, n | \vec{v} \cdot \vec{E} | \vec{k}, n' \rangle]}{(\varepsilon_{\vec{k}, n'} - \varepsilon_{\vec{k}, n})^{2}}$$

Writing by relativistic spin-orbit torque

Inverse spin galvanic effect: spin polarization – requires inversion asymmetry

Linear response II. (condensed matter class)

Boltzmann theory : non-equilibrium distribution function and equilibrium states

Sinova et at., RMP '15 arXiv: 1411.3249

$$\vec{S} = \frac{1}{V} \sum_{k,n} \vec{s}_{0n,\vec{k}} g_{n,\vec{k}}(E_j)$$

$$g_{n,\vec{k}} = f_{n,\vec{k}} - f_0(\varepsilon_{n,\vec{k}})$$

$$e\vec{E}\cdot\vec{v}_{0n,\vec{k}}\frac{\partial f_0(\mathcal{E}_{n,\vec{k}})}{\partial \mathcal{E}_{n,\vec{k}}} = -\frac{1}{V}\sum_{k,n}W_{n,\vec{k},n',\vec{k}'}(f_{n,\vec{k}}-f_{n',\vec{k}'})$$

Spins injected by out-of-plane current from FM polarizer

- spin angular momentum transfer $\vec{p}_{curr} \sim J$

- spin precession
$$\frac{d\bar{s}}{dt} = \frac{d\langle \vec{\sigma} \rangle}{dt} = \frac{1}{i\hbar} \langle [\vec{\sigma}, H_{ex}] \rangle$$
 $H_{ex} = J_{ex} \vec{M} \cdot \vec{\sigma}$ $\tau_{ex} = \frac{\hbar}{J_{ex} M}$
- spin decay τ_s

Ralph & Stiles, JMMM '08

Spins injected by out-of-plane current from FM polarizer

- spin angular momentum transfer $\vec{p}_{curr} \sim J$

- spin precession
$$\frac{d\vec{s}}{dt} = \frac{d\langle \vec{\sigma} \rangle}{dt} = \frac{1}{i\hbar} \langle [\vec{\sigma}, H_{ex}] \rangle$$
 $H_{ex} = J_{ex}\vec{M} \cdot \vec{\sigma}$ $\tau_{ex} = \frac{\hbar}{J_{ex}M}$
- spin decay τ_s
- spin decay τ_s
 $\tau_s << \tau_{ex}$: $0 = \frac{d\vec{s}}{dt} = \vec{p}_{curr} - \frac{\vec{s}}{\tau_s}$
 $\tau_s >> \tau_{ex}$: $0 = \frac{d\vec{s}}{dt} = \vec{p}_{curr} + \frac{J_{ex}}{\hbar}\vec{s} \times \vec{M}$
Field-like torque
 $\vec{T} = \frac{T_s}{\tau_{ex}}\vec{M} \times \vec{p}_{curr}$
 $J_{crit} \sim H_{aniso}$
 $\vec{T} = \vec{T} = \vec{T} + \vec{T} +$

Spins injected by out-of-plane current from FM polarizer

Requires magnetic field to switch back

Spin polarization due to inversion asymmetry and current via ISGE

Spin polarization due to inversion asymmetry and current via ISGE

FM with global inversion asymmetry

charge

Spin polarization due to inversion asymmetry and current via ISGE

FM with global inversion asymmetry

charge

Spin polarization due to inversion asymmetry and current via ISGE

FM with global inversion asymmetry

AF with local inversion asymmetry

Spin polarization due to inversion asymmetry and current via ISGE

FM with global inversion asymmetry

AF with local inversion asymmetry

Chernyshov et al. Nature Phys. '09

Summary

- 1. Relativistic QM, magnetism, and spintronics with ferro, antiferro, and paramagnets
- 2. Reading spin information
- 3. Writing spin information

Electrical switching of an antiferromagnet

Wadley, TJ et al. arXiv '15

Field-like ISGE torque in antiferromagnets

Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO₃

A. V. Kimel¹, A. Kirilyuk¹, A. Tsvetkov¹, R. V. Pisarev² & Th. Rasing¹

Non-centro-symmetric sublattices \rightarrow Néel-order (alternating-sign) $p_{A/B,curr}$

Zelezny, TJ et al. PRL '14

 $p_{A, \text{curr}} \parallel + z \times J$

Keffer, Kittel,PR'52

Non-centro-symmetric sublattices \rightarrow Néel-order (alternating-sign) $p_{A/B,curr}$

Non-centro-symmetric sublattices \rightarrow Néel-order (alternating-sign) $p_{A/B,curr}$

Non-centro-symmetric sublattices \rightarrow Néel-order (alternating-sign) $p_{A/B,curr}$

Non-centro-symmetric sublattices \rightarrow Néel-order (alternating-sign) $p_{A/B,curr}$

Non-centro-symmetric sublattices \rightarrow Néel-order (alternating-sign) $p_{A/B,curr}$

Non-centro-symmetric sublattices \rightarrow Néel-order (alternating-sign) $p_{A/B,curr}$

- $7 \downarrow \leftarrow 1 \checkmark \rightarrow 1 \checkmark \checkmark \leftarrow ---- Paramagnetic no spontaneous order$

Antiferromagnetic exchange coupling, order by local (atomistic) molecular field

Ferromagnetic: Large net magnetic moment (stray fields), sensitive to magnetic fields, slower dynamics $\omega \sim H_{an} \sim GHz$ Antiferromagnetic: Zero net magnetic moment (no stray fields), insensitive to magnetic fields, fast dynamics $\omega \sim H_{flop} \sim THz$