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l. Spin-orbit interaction
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Spin-Orbit Coupling

Spin and angular momentum coupled to create total angular

'._,u...-----é.;:-u*.,_“.u momentum j. l = ’ + s j s
._"- m = Y.’
mt € -

‘ | " From the electron’ s point of view, the nucleus revolves
Ze Bt round it with speed v = current loop. It is a relativistic effect
| = Zevl2mr

which produces a magnetic field uy//2r at the centre

B, = uoZev/idnr: [~10T for B or C]
=-mB E,=-ugB

SO

= 274/ 470 3
Since r = ay/Z and mr=h Ego = -Uoltg™ZL /4may

The spin — orbit Hamiltonian for a single electron is of the form:
in general #_ = (1/2m 2c2r)dV/dr Ls

HSO :)\‘i'g

Here the two hs have been assimilated into A, making it an energy (c.f. exchange)
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2, Single-electron atom
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Orbital angular momentum

The orbital angular momentum operators also satisfy the commutation rules:

Z

Ix1=1hl and [P,]=0 L
s
Spherical polar coordinates Electron -e
g
X = r sin0 cos¢ ey
y = rsing sing ucleus ze .y
Z = rcosf o

I=rxp=—ih(yd/dz —z0/0y)e, —1h(z0/dx —xd/dz)e, —1h(xd/dy — yd/dx)e;.

= ih{singd /OF + cot 0 cos pd /D),
= il — cos @@/ 00 + cot B sin ¢ /D),

¥

"y

u

I. — —ih(8/9¢).

f—f+f+f——ﬁ(ﬂﬂ footgd 4 L O
oY T TE a6 af - sin® 8 A¢°
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Orbital angular momentum operators

. 2.
Eigenvalues of I | is the orbital angular momentum quantum number

I(I+1)h? ‘
| =1 case s ’{
- h
m,= 1,0, -1 corresponds to the eigenvectors 1 0 0 ml
ol.l1]. 1ol VII(H1)] A
0 U 1

I,, 1, and I, operators can be represented by the matrices:

0  1/v2 0 0 —i/v2 0 1 0 0O
{ 1/v/2 0 uﬁ} fi, {Uﬁ 0 —-.e;ﬁ] i, [ 00 O ] hi
00 -1

0 1/4/2 0 0 i/2 0
where o Lo
I = |0 1 0|2k
001
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Solution of Schrodinger’s equation

Schrodinger’s equation:

‘H.Ef'l‘lji — E#w._
Rorar 28 1 2 Ze? _ —Zme'  —ZRg
B st oo — et | - ¥ = iy E"‘_gzhz 2 2

2mie \ O o h<r Amegr Egli=TL n
Satisfied by the wavefunctions: wir, b8, 0) = R(r)0(0)d(a)
Where: R(r) = VH(Zr [nap) exp[—(Zr /nap)] (V) are Laguerre polynomials V°/=1)
And the combined angular parts are Y8, ) o< PM(@)e™e? | (Legendre polynomials)

Normalized spherical harmonics:
Y0 = \/1/4x '
YYP = \/3/4m cosf Y = 44/3/87 sin 0 exp(tig)
V¥ = /5/167(3cos?@ — 1) Y5 = +£4/15/87 sinf cos 0 exp( i)

YY = /T/16m(5cos* 8 — 3cos@) Y5 = £4/21/64n(5cos? # — 1) sinf exp(Lig)

Y55 = /15/327 sin® @ exp(£2i¢)
Y55 = \/105/327 sin® 0 cos @ exp(+2ip)  Yi® = +.,/35/647 sin® 0 exp(+3i¢)

Sy, BL T G m BT

ESM Cluj 2015



One-electron hydrogenic states

The three quantum number n,| m, " : M m No of states

denote an orbital.

Orbitals are denoted nx_, Is ! 0 0 +172 2
x=s,p,d,f.for1=0,12,3,. 28 |2 |0 |0 12 |2
2p 2 1 0,1 +1/2 6
Each orbital can accommodate at 3s 3 0 0 +1/2 2
most two electrons™ (m;=x1/2) 3p 3 1 0,21 112 |6
3d 3 2 0£1,+2 |x1/2 |10
4s 4 0 0 +1/2 2
4p 4 1 0,+1 +1/2 6
4d 4 2 0,£1,+2 +1/2 10
4f 4 3 041,423 |+1/2 |14

*The Pauli exclusion principle: No two electrons can have the same four quantum numbers.
=> Two electrons in the same orbital must have opposite spin.
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Single-electron orbitals

s electrons P electrons

d electrons

m=2

P?| R, (o) I?
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AT . . AT
'H Periodic Table 2He
1.00 4.00
. (72 em )
Atomic Number — 66D .
<— Atomic symbol
—— y / Y A a Ve NI
3Li 4Be 1625 [*— Atomic weight °B 6C N 80 °F IONle
6.94 9.01 Typical ionic change —>3+4f 10.81 12.01 14.01 16.00 19.00 20.18
I + 20 2+ 20 Antiferromagnetic T(K) — Ferromagnetic T(K)
AN A I\ /> <
>”Na<>'2Mg ‘ (3AL1 Y4si Yisp  Yies  ('7¢l Yi8Ar
22.99 2421 26.98 28.09 30.97 32.07 35.45 39.95
| + 3s0 2 + 350
>_<>_<( Yoomm: Y5 Y
I9K 20Ca 21 SC 22T| 23v
38.21 40.08 4496 47.88 50.94 55.85 58.93 58.69
| + 450 2 + 450 3 + 3d° 4+ 3d° 3 + 3d? 3+ 3d° 2+ 3d’ 2 + 3d®
\ A A A A A 5 e
(37Rb 38 Sr 32 Y Y4 Zr *' Nb*2 Mo
85.47 87.62 88.91 91.22 92.91 95.94
I +550 |2+50 [2+4d° |4+4d® |5+4d |5+4d
e T
55Cs [6Ba [La |2Hf |°Ta [*W 760s [77Ir
13.29 137.3 138.9 1785 180.9 183.8 186.2 190.2 192.2
I +650 [2+6s° |3+4f |4%58° |5+5° [6+54 |4+58 |3+548 |4+56
\ A A
B7Fr ®%Ra [Ac
223 226.0 227.0
2478 |3+5f R a7 2% \
L - [*Ce [P°Pr [*Nd [°(Pm [*’Sm “Tm|%Yb |”'Lu
140.1 140.9 144.2 I 150.4 168.9 173.0 175.0
A4 3+472 3+4£ 3+4F 3+42 | 3+4£13 | 3+404
A0
0Th °'Pa P2U 93Np
232.0 231.0 238.0 238.0
| 4+50 5+5° | 4+57 5+ 572
T

:] Diamagnet
S Paramagnet
Magnetic atom

Ferromagnet T > 290K

(.
D Antiferromagnet with Ty > 290K
(-

Antiferromagnet/Ferromagnet with T /T <290 K

:] Nonmetal

] Mew
Radioactive

ESM Cluj 2015



3. Many-electron atom
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The many-electron atom

Ho= 9 [—(K?/2m.)V} — Ze* [ameors] + Y _ €2 /Ameori;

i<j

Hartree-Fock approximation
* No longer a simple Coulomb potential.
* [ degeneracy is lifted.

* Solution: Suppose that each electron experiences the
potential of a different spherically-symmetric potential.

n 1|2
1525
¥

2p
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:] Nonmetal

] Mew
Radioactive

:] Diamagnet
S Paramagnet
Magnetic atom
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H ) Magnetic Periodic Table THe )
1.00 4.00
. (e~ )
Atomic Number — 66D .
<— Atomic symbol
—— y / Y A a Ve NI
3Li 4Be 1625 [*— Atomic weight °B 6C N 80 °F IONle
6.94 9.01 Typical ionic change ~ —>| 3 +4f 10.81 12,01 14.01 16.00 19.00 | 20.18
I + 20 2+ 20 Antiferromagnetic T(K) — Ferromagnetic T(K)
> <> < N AN A N /> <
''Na ['2Mg (3AL1 Y4si Yisp  Yies  ('7¢l Yi8Ar
22.99 2421 26.98 28.09 30.97 32.07 3545 | 39.95
| + 3s° 2 + 3s0
< Yorm: Y5 Y
I9K 20Ca 21 Sc 22T| 23v
382l 40.08 44.96 47.88 50.94 55.85 58.93 58.69
| +4s° 2 + 4s° 3+3d | 4+3d° 3 + 3d? 3+3d8° 2+3d 2 + 3d®
\ A A A A A i ek
(37Rb 38 Sr 32 Y Y4 Zr *' Nb*2 Mo
8547 | 87.62 8891 91.22 9291 95.94
I +550 |2+50 [2+4d° |4+4d® |5+4d |5+4d
\ A A A A A A
sCs [*Ba [La [2Hf [7Ta [*W 760s (77Ir
13.29 137.3 138.9 1785 180.9 183.8 186.2 190.2 192.2
l+60 |2+6s° |3+4f |[4%58° |5+58° [6+50 |4+548 |3+54 [4+50
\ A A
B7Fr ®%Ra [Ac
223 226.0 227.0
2+78° | 3+5f b= a2 Y5 2"
L 8Ce [’Pr [*°Nd [*Pm [*2Sm “Tm|%Yb |”'Lu
140.1 140.9 144.2 [ 150.4 168.9 173.0 175.0
4 + 4f° 3+472 3+4£ 3+4F 3+42 | 3+4£13 | 3+404
Al
0Th °'Pa P2U “Np
232.0 231.0 238.0 238.0
| 4+50 5+5° | 4+57 5+ 572
T

Ferromagnet T > 290K
Antiferromagnet with Ty > 290K

Antiferromagnet/Ferromagnet with T /T <290 K



Addition of angular momenta

First add the orbital and spin momenta [ and s, to form L
and S.Then couple them to give the total |

J=L+S$ |L-S| <] <|L+S]

L Different J-states are termed multiplets, denoted by;

25+ Xj

, X=S,PDF.. for L=0,1,23,...
Hund s rules

To determine the ground-state of a multi-electron atom/ion.
1) Maximize S
2) Maximize L consistent with S.
3) Couple L and S to form J.
e Less than half full shell J=L-S
e More than half full shell J=L+S
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Hund’ s rules; examples

Fe3t 3d°
S=52 L=0 J=5/2 AN RN
655/2 2 1 0 -1 -2

Note; Maximizing S is equivalent to maximizing M, = Zm,, since

M. <S

Si?
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Co?* 3d’

S=32 L=3 |]=9/2 K

4
I:9/2

Note; Maximizing L is equivalent to maximizing M, = Zm,, since
M <L
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Ni2* 3d®
S=1 L=3 =4

3F4
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Ce3+ 4fI !

S=1/2 L=3 J=5/2 32 1 0 -1 -2 -3

2
I:5/2

ESM Cluj 2015



Nd3* 4f3 (MR

| 2 -3
S=32 L=6 |=9/2 32 0

92
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Dy3* 4f
S=52 L=5

6
I_|I5/2

=152
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Hund’s rules 3d and 4f

- S

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
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Spin-Orbit Coupling

F,=AL.S A is the spin-orbit coupling constant

A > 0 for the Ist half of the 3d or 4f series.

A < 0 for the 2nd half of the 3d or 4f series. (for Hund’s 3rd rule)

Compare single-electron atom case: 7/ = AlLs

A==+ A2S

ion | A(K)
3d' | Tt | 124
3d? | Ti** 88
3d3 | V2 82
3d4 | Cr?* 85
3d% | Fe** | -164
3d” | Co?* | -272
3d® | Ni#* | -493

L.S = (1/2)(J2- L2- 82 = (F12)[J(J+ 1)-L(L+1)-S(S+ )]




Zeeman Interaction

The magnetic moment of an ion is represented by the expression 722 = - (L + 28)ug/h

The Zeeman Hamiltonian for the magnetic moment in a field B along e, is =-m.B

Zeeman

ﬂZeeman = (HB/h)(Lz + 2Sz)Bz

For a particular J-multiplet the matrix elements of L + 2§ are proportional to those of J (Wigner
Eckart theorem)

(LSIM| L + 28 |LSJM)) = g(LS|M,| J [LSJM)) g, is the Landé g-factor

M =]

7712 - gjlz“B/ h ‘3::-;-’ ....

H geeman = g)-B1g/N) |
eeman J-, MJ =-j

j_[Zeeman‘PLSJM = g HugMB P gm
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Landé g-factor

The vector model of the atom, including
magnetic moments. First project 772 onto J. z

J then precesses around z. <

The g-factor for the atom or ion is the ratio of
the component of magnetic moment along J in
units of pg to the magnitude of the angular

momentum in units of 7.

gJ = (L + 2S) Take scalar product with J
g = -(MJlug)/(P11) = -m2)(lug) [0 + 1)]

but ) = -(ug/{(L + 2S).(L + S)} yP=Jjg+nhnz ), =Mn
~(ug/A){(L? + 3L.S + 28?)}
~(ug/P){(L2 + 282 + (3/2)(J2 - L2 - §?)} since J2=L2+S> +2 LS
-(He/M{((372))* — (172)L* + (1/2)$%)}
-(He/M{((3712))( + 1) = (1712)L(L + 1) + (1/2)S(S + 1)}

hence

g = 3/2 + {S(S+I) - L(L+1)}/2J(J+1) Check;gs =2 ,g,=|
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Co?* free ion

The energy levels for a free
ion with electronic
configuration 3d”: Co?"

5:%.[ =3,) :;;g=§.

3

_3/(2
2

-5A

7

-T2

-9
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4. Paramagnetism
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Paramagnetic susceptibility - Brillouin theory

C is Curie’s constant.
Curielaw | X=C/T Units: Kelvin, K.

Typical values ~ |K > . m; exp(—e;/kgT)
The thermodynamic average of the moment: (m) = Y . exp(—ei/kpT)
B =B, — S —gupMi(l — pogugMH/kpT)
E=-mB <m:>= Z] (1
~ (1 — pogupMH/kpT)

Using the identities:

" o J
> 1=2J+1; > M;=0 > M3 = J(J+1)(2] +1)/3,
_J -J —J
and the factthat x =n{m yH (n is the number density of atoms/ions)
we find C - #ﬂ’”ﬂ'ﬁfs; (J+1) X = ponm,2ugt | 3kgT
kg
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54
M
J —3/
. 72 IAWOH :
e’ - 35 2 _1/2
L7 e 2 <
J=5h “ = :.": B ;/2 1/
- _g'luB t — 422 3/ 2
52

Energy levels of an ion with J = 5/2 in an applied field
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4f ions
Table 4.6. The 4 f ions. The paramagnetic moment mes and the

saturation moment my, are in units of w4

4fn S L J g mo=gJ mg=gJSJ(J+1) mF
1 cet* 1 3 i & 214 2.54 2.5
2 Pt 1 5 4 % 320 3.58 3.5
3 Nt 3 6 2 & 327 3.52 3.4
4 Pm* 2 6 4 1 240 2.68

5 Sm'* 3 5 3 I 071 0.85 1.7
6 Ev* 3 3 0 0 0 0 3.4
7 Gd#* I o I 2 170 7.94 8.9
8 ™" 3 3 6 3 90 9.72 9.8
9 Dyt 3 5 LY & 100 10.65 10.6
10 H™ 2 6 8 i 100 10.61 10.4
11 Eft 36 B¢ 90 9.58 9.5
2 Tw* 1 5 6 I 70 7.56 7.6
13 vyt 1 3 1 % 40 4.53 4.5

J is a good gyantysn number



3d ions

Table 4.7. The 3d ions. mey is in units of g

3d" S L J g gfIU+D g/SS+1D) mF
1 TN, Ve L 2 1 1 155 1.73 1.7
2 TRV 1 3 2 1 163 2.83 2.8
3 vertt 13 1 1 078 3.87 3.8
4  CcRt,Mn* 2 2 0 4.90 4.9
5  Mn*™,F* 3 0 § 2 592 5.92 5.9
6 Ft,Cot 2 2 4 1 67 4.90 5.4
7  Co*,Ni** 1 3 2 1 663 3.87 4.8
8  Ni¥+ 1 3 4 3 559 2.83 3.2
9  Cut 1 2 5§ & 355 1.73 1.9

S is a good quantum number

L is ‘quenched’
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Magnetization curve - Brillouin theory

To calculate the complete magnetization curve, set y = guguoH/kgT,
then
(m)=gug 0/0y[InZ Jexp{Myy} [d(In z)/dy = (1/z) dz/dy]

The sum over the energy levels must be evaluated; it can be written as
exp(Jy) {I +r+r2+ ... r2l} where r = exp{-y}
The sum of a geometric progression (I + r + r2+ ...+ ") = (r"*!' - D)/(r - 1)

. 2 Jexp{My} = (exp{-(2J+1)y} - exp{ly}/(exp{-y}-I)

multiply top and bottom by exp{y/2}
= [sinh(2)+1)y/2]/[sinh y/2]
(m) = gug(d/ 3 y)In{[sinh(2)+1)y/2]/[sinh y/2]}
= gup/2 {(2J+1)coth(2)+1)y/2 - coth y/2}
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Paramagnetism - Brillouin theory

setting X = Jy, we obtain

(m;) = moB;(x)

where Z(x) is the Brillouin function { }

2J + 1 2J + 1 1 X
<mz)=m0

co
2J 2J 2J 2J

This reduces to (m ) = pg tanh(x) in the limit | = Y2, g = 2.
and (m ) = £(x) is the Langevin function {coth x - 1/x} in the large-] limit.
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Magnetization curves for paramagnetic ions

------
--------------------
-
ann®
wn*®
*
.
.

o
.

Slope = 13

x = g JugB/kgT

Comparison of the Brillouin functions for s = 2, | = 2 and the Langevin function (] = «)

0 2 - 6 8
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Experimental confirmation

A
5 7 FaX Foum———— te) eGd3+
o 6
Q- =
:za
= O ° ° ° N
S Fe3+
E 4
-
L 3 - e
..6 Cr3+
S 5 ©01.30 K
— 2 2.00 K
- e 3.00K
1 0421 K
Brillouin functions
@) M 1 M 1 M 1 M 1 M -
O 1 2 3 4
X

Reduced magnetization curves of three paramagnetic salts, compared with Brillouin
function predictions
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5. Crystal field
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Summary — so far

¢ Filled electronic shells are not magnetic (the spins are paired; m, = +1/2)
¢ Only partly-filled shells may possess a magnetic moment

¢ The magnetic moment is given by 72 = gug), where h) represents the total angular
momentum. For a given configuration the values of ] and g in the ground state are given by
Hund’ s rules

When the ion is embedded in a solid, the crystal field interaction is important. This is the
electrostatic Coulomb interaction of an ion with its surroundings.
The third point is modified:

¢ Orbital angular momentum for 3d ions is quenched. The spin only moment is 72 = gugS,
with g = 2.

¢ Magnetocrystalline anisotropy appears, making certain crystallographic axes easy directions
of magnetization.
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Magnitudes of the interactions

The Hamiltonian is now

TH = F o+ H + H + H,

Typical magnitudes of energy terms (in K)

oA

SO

H H,inlT
3d |1-510* |102-10° 104 1

4 (1-610° |1-510° =310 |1

HH .. must be considered before #/ . for 4f ions, and the converse for 3d ions. Hence | is a
good quantum number for 4f ions, but S is a good quantum number for 3d ions. The 4f
electrons are generally localized, and 3d electrons are localized in oxides and other ionic
compounds.
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Magnitudes of the interactions

z

e

Coulomb interactions |L,S)

spin-orbit interaction AL.S |J)

7,

ion | A Zeeman interaction gugB.JIh |M,)
3d' | Tidt | 124 41 | Ce3* | 920
3d2 | Ti2* 88 4f2 | Pr3+ 540 Crystal field interaction fpy(r)q(r)ds3r
3d3 | vz 82 413 | Nd3* | 430
3d4 | Cr2* 85 4f5 | Sm3* 350
3d5 | Fe?* |-164 418 | Tb® | -410
3d7 | Co?* | -272 4f° | Dy3* | -550 H H g H Hy
38 | N2+ | -493 | [4f0 |Ho | -780 n1T
41 B | 1170 3d | 1-510% | 102-103 104 1
452 | T | 1900 | |4F | 1-610° [ 1-510° ~3102 |1
413 | Yb% | -4140




3d and 4f compared

Co

Cobalt

0,15
r, nm

0,1

0,25

As metallic atoms or
ions the transition
metals occupy one
third of the volume of
the rare earths.

0.36nm
0,5 ..
Gadolinium
0,4 - Gd3+ (105 pm)
Gd
Dgd-gd/2
Y T
0 005 01 015 02 >
r, nmM
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Oxides

Oxides are usually
insulating.
Structures are
based on dense-
packed O? arrays,
with cations in
interstitial sites.

R = 2" -1rg =58 pm

Octahedral and
tetrahedral sites
are common in
transition metal
oxides and other
compounds.

Both have cubic
symmetry if
undistorted

Ree = ((3/2)2 - o = 32 pm
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Cation radii

in oxides: low spin values are in parentheses.

4-fold pm 6-fold pm 6-fold pm 12-fold pm

tetrahedral octahedral octahedral substitutional

Mg?* 53 Cr4+ 3d? 55 Ti* 3d’ 67 Ca?* 134

Zn?* 60 Mn4+ 3d3 53 V3* 3d? 64 Sr2* 144

Al3* 42 Cr3+3d3 62 Ba?* 161

Fe3* 3d° 52 Mn?*+ 3d° 83 Mn3* 3d* 65 Pb2* 149
Fe2* 3d° 78 (61) Fe3* 3d° 64 Y3t 119
Co?* 3d’ 75 (65) Co3* 3d° 61 (56) Las* 136
Ni2* 3d® 69 Nis* 3d’ 60 Gd3* 122

The radius of the O? anion is 140 pm
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Orbital moment quenching is a cubic crystal field

g
To demonstrate quenching of orbital angular momentum, consider the 2p states % !, !
correspondingto | = |, m; =0, +1.

(N = R(r) cos 6

! = R(r) sin 6 exp {1}
The functions are eigenstates in the central potential V (r) but they are not eigenstates of H_ ;. Suppose
the oxygens can be represented by point charges q at their centres, then for the octahedron,

H =V = D(x* +y* +7* - 3y2z2 -322x2 -3x2y?)

where D = eq/4me a®. But y*! are not eigenfunctions of V; e.g fp;"V ap,dV= d;, where i,j=-1,0, 1.

We seek linear combinations that are eigenfunctions, namely z :

P? = R(r)cos 6 =zR(r) = p, Ny
(AV2)@! + ¢y )= R’ (r)sinBcosd = yR(r) =p, ;/;
(IV2)(p! -y hH= R’ (r)sinBsing = xR(r) = p, Iy
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°q

The 2p eigenfunctions are degenerate in an undistorted cubic environment

P = R(r)cos 6 =zR(r) =p,
(AAV2)(' + )= R’ (r)sinOcosd = yR(1) = p,
(1V2)@! -¢p) = R’ (r)sinBsind = xR(r) = p,
Px Py P,

Note that the z-component of angular momentum; 1, = i%/d¢ is zero for these wavefunctions.
Hence the orbital angular momentum is quenched.

The same is true of the 3d eigenfunctions, which are

2
d, = (IN2) 2 - ?) = R’ (r)sin26sin2¢ = xyR(r) dy2_y2 d,
dyZ = (1/\/2)(1])1 -l = R’ (r)sinBcosBsing =~ yzR(r) t), orbitals
d =12 + ) = R’ (r)sinBcosOcosd = zxR(r)
dz2*= (1V2)(? + 1p )= R’(r)sin?0cos2¢ = (x2-y2)R(r) e, orbitals =
d, 2> 2=y = R’ (1)(3cos20 — 1) = (3z%1)R(r) d,dy, d,,

The 3d eigenfunctions split into a set of three and a set of two in an undistorted cubic environment

Notation, a or b denote a nondegenerate single-electron orbital, e a twofold degenerate orbital and ¢ a threefold degenerate orbital. Capital letters refer to multi-
electron states. a, A are nondegenerate and symmetric with respect to the principal axis of symmetry (the sign of the wavefunction is unchanged), b. B are
antisymmetric with respect to the principal axis (the sign of the wavefunction changes). Subscripts g and u indicate whether the wavefunction is symmetric or



Orbitals in a cubic crystal field

|=0 s orbital

TN 20
'w,’/mfm:m\\\\\\\“:\\v\_ iy = - 2
) = n
R % = .
e ' |= | p orbitals
it
AN
A
53"lm,"'""“"‘wu\nm
LS
'\"“}\‘\\'\\\\% N 74////////717 ]
NN qin
NN I
R 11
NG WL n — 3
dz2
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Orbitals in the crystal field

hybridization

i

NRY
Ny
‘\\\.\ “.'\“‘\
S
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Crystal-field theory regards the splitting of the 3d orbitals in octahedral oxygen, for example, as
an electrostatic interaction with neighbouring point charges (oxygen anions). In reality the 3d
and 2p orbitals of oxygen overlap to form a partially covalent bond.The oxygens bonding to the
3d metals are the ligands. The overlap is greater for the e, than the t,, orbitals in octahedral
coordination.

The overlap leads to mixed wavefunctions, producing bonding and antibonding orbitals, whose
splitting increases with overlap. The hybridized orbitals are

(I) = Oﬂp2p+ﬁlP3d
where a2+ 2= I.
For 3d ions the splitting is usually |- 2eV, with the ionic and covalent contributions being of
comparable magnitude

The spectrochemical series is the sequence of ligands in order of effectiveness at producing
crystal/ligand field splitting.

Br'<CI'<F'<OH<C0O?;<0?<H,0<NH;<SO?%*;<NO",<§*'<CN"
The bond is mostly ionic at the beginning of the series and covalent at the end.

Covalency is stronger in tetrahedral coordination but the crystal field splitting is
Aree = (3/5)A
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One-electron energy diagrams
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Lower symmetry

As the site symmetry is reduced, the degeneracy of the one-electron
energy levels is raised. For example, a tetragonal extension of the
octahedron along the z-axis will lower p, and raise p, and p,. The effect
on the d-states is shown below. The degeneracy of the d-levels in
different symmetry is shown in the table.

The effect of a tetragonal distortion of octahedral symmetry on the
one-electron energy levels.

The splitting of the 1-electron levels

o 1 | Cubic | Tetragonal | Trigonal | Rhombohedral
in different symmetry 1 1 1 1 1

S

p |2 3 1,2 1,2 1,11

d |3 2,3 11,12 1,2,2 1,1,1,1,1

f 14 133 11122 |1,1,1.22)| 1,1,1,1,1,1,1
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The Jahn-Teller effect
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*A system with a single electron
(or hole) in a degenerate level
will tend to distort spontaneously.

*The effect is particularly strong
for d* and d° ions in octahedral
symmetry (Mn>*, Cu?") which can
lower their energy by distorting
the crystal environment- this is
the Jahn-Teller effect.

o[f the local strain 1s €, the energy
change is

O0E = -A€ + Bé2
where the first term 1s the crystal
field stabilization energy and the
second term is the increased
elastic energy.

*The Jahn-Teller distortion may
be static or dynamic.



High and low spin states

An ion is in a high spin state or a low spin state depending on whether the Coulomb interaction (
leading to Hund’ s first rule (maximize S) is greater than or less than the crystal field splitting A,

Consider a 3d® ion such as Fe®",

—=4
Tﬂ

A

Cf.l v v J et '

U, > A, givesa high-spin state, S =2 e.g. FeCl, U, < A, iives a low-spin state, S = 0 e.g. Pyrite FeS,
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Crystal Field Hamiltonian

Her = [ po(r)@of (r)dr.

Charge distribution of the ion potential created by the crystal

¢cf(")= / p(r) d3f’.

Admwey|lr — r’|

Here 1/|r — r’| can be expanded spherical harmonics using spherical polar
coordinates r = (r,0,¢)and r' = (r', 0', ¢'):
1 1 22 4 n o

— (%) T 0. ). 6).

m=—N

r—rl riS@e+)
Hence
0 r.0.9)= 2 3 1Y, X7 (0. )
where
f p(r’ (—=1)"Y (@, ¢)
= (2n+l) Pt
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The approximation made so far is terrible.It ignores the screening of the potential by the outer
shells of the 4f ion for example, and also the covalent contribution. But it captures the
symmetry of the problem. We proceed with it, but treat the crystal field coefficients as empirical
parameters.

It is useful to expand the charge distribution of a central 4f ion in terms of the 2"-pole
moments of the charge distribution,n = 2,4, 6

The quadrupole moment

0, = / p4f(r)(300529 — 1)r2d3r.
The hexadecapole moment

0. — f pas(r)(35 cos* 0 — 30cos?0 + Brdr,
The 64-pole moment

Qs = f Pqr(r)(231 cos® @ — 315cos* @ + 105 cos? 6 — S)yr®dr.

Rare earth
quadrupole
moments

(B @@)@QD@)@)
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Single-ion anisotropy

Single-ion anisotropy is due to the electrostatic crystal field interaction + spin-orbit
interaction. The 4f charge distribution p, (r) interacts with the crystal field potential
¢p(r) to stabilizes some particular orbitals; spin-orbit interaction -AL.S then leads to
magnetic moment alignment along some specific directions in the crystal.

The leading term in the crystal field interaction is
= (1/2)02 A} (3cos g —1),

where A,° is the uniaxial second-order crystal field parameter, which described the
electric field gradient created by the crystal which interacts with the 4f quadrupole
moment. Compare &, = K,sin?0

The crystal field interaction can be expressed in terms of angular momentum
operators, using the Wigner-Eckart theorem

H.p = Z Z/B"' o,
n=0,246 m=—n
\ Stevens

cf coefficient operators




Here B)' = 0.(ry;)AjAnd 0, is different for each 4f ion, proportional to the 2"-pole
moment

Q, =2 8y(ry) Q, =8 0(ry") Qg = 16 O4(rs®)
A ™~ v.., parameterises the crystal field produced by the lattice.

NB. Q, #O0for ] (orlL) 21
Q,#O0for](orlL)22
Q. #O0for](orlL)23

The Stevens operators are tabulated, as well as which ones feature in each point
symmetry

e.g.The leading term in any uniaxial site is the one in O,°

0 =[3J. —J(J + ).

The complete second order (uniaxial) cf Hamiltonian is

Her = 0 (g3l 4290 + 4202
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Charge distributions of the rare-earth ions. Those with a positive quadrupcle moment (8, = 0}, italic type
distinguished from those with a negative quadrupole moment (8, < 0) bold type. Note the quarter-shell changes,

+1/2 +9/2
eg Nd¥* | =912 +3/2

+5/2

+7/2

+9/2 +1/2

A= 0

o . NQ\
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The cf Hamiltonian for a site with cubic symmetry is

Hey = 04 (riy) [Agog + 5A“41{C)O::(C)] + 06 (rys) [Agog - 21A20§(d]

For 3d ions only the fourth-order terms exist; (I = 2)

Kramer’ s theorem

It follows from time-reversal symmetry that the cf energy levels of any ion with an odd
number of electrons, and therefore half-integral angular momentum, must be at least 2-fold
degenerate. These are the |iMJ> Kramers doublets.

When | is integral, ther will be a |0) singlet (with no magnetic moment) and a series of
doublets.
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:] Nonmetal

] Mew
Radioactive

:] Diamagnet
S Paramagnet
Magnetic atom
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H ) Magnetic Periodic Table THe )
1.00 4.00
. (e~ )
Atomic Number — 66D .
<— Atomic symbol
—— y / Y A a Ve NI
3Li 4Be 1625 [*— Atomic weight °B 6C N 80 °F IONle
6.94 9.01 Typical ionic change ~ —>| 3 +4f 10.81 12,01 14.01 16.00 19.00 | 20.18
I + 20 2+ 20 Antiferromagnetic T(K) — Ferromagnetic T(K)
> <> < N AN A N /> <
''Na ['2Mg (3AL1 Y4si Yisp  Yies  ('7¢l Yi8Ar
22.99 2421 26.98 28.09 30.97 32.07 3545 | 39.95
| + 3s° 2 + 3s0
< Yorm: Y5 Y
I9K 20Ca 21 Sc 22T| 23v
382l 40.08 44.96 47.88 50.94 55.85 58.93 58.69
| +4s° 2 + 4s° 3+3d | 4+3d° 3 + 3d? 3+3d8° 2+3d 2 + 3d®
\ A A A A A i ek
(37Rb 38 Sr 32 Y Y4 Zr *' Nb*2 Mo
8547 | 87.62 8891 91.22 9291 95.94
I +550 |2+50 [2+4d° |4+4d® |5+4d |5+4d
\ A A A A A A
sCs [*Ba [La [2Hf [7Ta [*W 760s (77Ir
13.29 137.3 138.9 1785 180.9 183.8 186.2 190.2 192.2
l+60 |2+6s° |3+4f |[4%58° |5+58° [6+50 |4+548 |3+54 [4+50
\ A A
B7Fr ®%Ra [Ac
223 226.0 227.0
2+78° | 3+5f b= a2 Y5 2"
L 8Ce [’Pr [*°Nd [*Pm [*2Sm “Tm|%Yb |”'Lu
140.1 140.9 144.2 [ 150.4 168.9 173.0 175.0
4 + 4f° 3+472 3+4£ 3+4F 3+42 | 3+4£13 | 3+404
Al
0Th °'Pa P2U “Np
232.0 231.0 238.0 238.0
| 4+50 5+5° | 4+57 5+ 572
T

Ferromagnet T > 290K
Antiferromagnet with Ty > 290K

Antiferromagnet/Ferromagnet with T /T <290 K



