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This series of three lectures covers basic concepts in magnetism;
Firstly magnetic moment, magnetization and the two magnetic
fields are presented. Internal and external fields are distinguished.
The main characteristics of ferromagnetic materials are briefly
introduced. Magnetic energy and forces are discussed. Sl units
are explained, and dimensions are given for magnetic, electrical
and other physical properties.

Then the electronic origin of paramagnetism of non-interacting
electrons is calculated in the localized and delocalized limits. The
multi-electron atom is analysed, and the influence of the local
crystalline environment on its paramagnetism is explained.

Assumed is an elementary knowledge of solid state physics,
electromagnetism and quantum mechanics.




1. Magnetism of the electron

s
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Einstein-de Hass Experiment

Demonstrates the relation between magnetism and angular momentum.

A ferromagnetic rod is suspended on a torsion

‘ fibre.

The field in the solenoid is reversed, switching the

direction of magnetization of the rod.
™\ Torsion fibre

An angular impulse is delivered due to the reversal
of the angular momentum of the electrons-
conservation of angular momentum.

Ni has 28 electrons, moment per Ni is that of 0.6e

Three huge paradoxes; — Amperian surface currents
\ 100 years ago — Weiss molecular field
Ferromagnetic rod — Bohr - van Leeuwen theorem

ESM Cluj 2015



The electron

The magnetic properties of solids derive essentially from the magnetism of their electrons.
(Nuclei also possess magnetic moments, but they are = 1000 times smaller).

An electron is a point particle with:
mass m_=9.109 103! kg

(S

charge -e =-1.602 107 C
intrinsic angular momentum (spin) 2h = 0.527 1034 s

/
[\.'.\\ The same magnetic moment,
- ~

LI TN m
~a— U?_,D '\ the Bohr Magneton,

ug = eh/2m_ = 9.27 1024 Am?

The corkscrew 'Ur'le- :’he" L | is associated with %zh of spin
the tip of the right thumb

traces the current, the angular momentum or h of
index finger points orbital angular momentum
slong m. Orbital moment Spin

On an atomic scale, magnetism is always associated with angular momentum. Charge is
negative, hence the angular momentum and magnetic moment are oppositely directed
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Origin of Magnetism

1930 Solvay conference

At this point it seems that the whole of chemistry and much of physics is understood in principle.The problem

is that the equations are much to difficult to solve..... P.A. M. Dirac
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Orbital and Spin Moment

A Magnetism in solids is due to the angular momentum of

C@) electrons on atoms.

Two contributions to the electron moment:

e Orbital motion about the nucleus

momentum.

= - (ug )1 + 25)

< e Spin- the intrinsic (rest frame) angular

(b)
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Orbital moment

Circulating current is I; I = -e/t = -ev/2mr
The moment*is 72=1A 1= -evr/2
Bohr: orbital angular momentum I is quantized in units of

h; h is Planck’ s constant = 6.626 1034 s;
h =h/2m = 1.055 1034 ]s. |I] = nh

Orbital angular momentum: I=mprxyv Units: | s

Orbital quantum number |, ,= mh m,=0,x1,£2,..,+I so #_,=-m,(eh/2m,)
The Bohr model provides us with the natural unit of magnetic moment

Bohr magneton |pg = (eh/2m,) | yg = 9.274 10-%* A m? M1, = mug

In general | 722 = vyI Y = gyromagnetic ratio ~ Orbital motion  y = -e/2m,

* Derivation can be generalized to noncircular orbits: 772 = IA for any planar orbit.
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g-factor; Bohr radius; energy scale

The g-factor is defined as the ratio of magnitude of #zin units of y; to magnitude of I
in units of h.
g = | for orbital motion
The Bohr model also provides us with a natural unit of length, the Bohr radius
a, = 4me h?/m_ e? ag = 52.92 pm

and a natural unit of energy, the Rydberg R,

R, = (m/2h2)(e?/4ne,)? R, = 13.606 eV
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Spin moment

Spin is a relativistic effect.
Spin angular momentum s

Spin quantum number s s = Y2 for electrons
Spin magnetic quantum number m m, = =2 for electrons
s,= mh m= =2 for electrons

m, = -(e/my)mh = tpg m = -(e/m,)s

For spin moments of electrons we have:
Y = -e/m, g=2

More accurately, after higher order corrections: g =2.0023 77z, = 1.00116pg

An electron will usually have both orbital and spin angular momentum

m= - (ug/F)(I + 2)
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Quantized mechanics of spin

In quantum mechanics, we represent physical observables by operators — differential or matrix.
e.g. momentum P = -ihV; energy p2/2m_ = -h?V?/2m_

. . . . . Ak
n magnetic basis states = n x n Hermitian matrix, A;=A’; Pauli spin matrices

Spin operator (for s = /2 ) 0 1 0 —i 1 0
s = oh/2 T [l Dj|*[-ei 0 }’!ﬂ —1]
Electron:s = /2 = m=%!>2 i.e spin down and spin up states
Represented by column vectors: ||) = [ 1 }l’l‘) = [ 0 } sD=-®0R)11); s|iy= HB/2)))
0 1
2 22 a3 &2 1 0] .02,
8° =8 + 8, + 8 = [ 01 } 3h=/4 Eigenvalues of s%| s(s+1)h?

The fundamental property of angular momentum in QM is that the operators satisfy the commutation relations:

|&,, 8, = ihd., [&,,5.] = ihd,, |[&.,8. = iha,. or 8 x 8 = iha.

Where [A,B] =AB - BA and [A,B] = 0 = A and B’ s eigenvalues can be measured simultaneously [sz,sz] =0
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Quantized spin angular momentum of the electron

s=1 1/2
2uougH ¢

-1/2

gV[s(s+1)]1h?

1/2

The electrons have only two eigenstates, ‘spin up’ (1, m, = -1/2) and ‘spin down’ (|, m =
1/2), which correspond to two possible orientations of the spin moment relative to the
applied field.
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2. Paramagnetism of localized electrons

&

2015
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Spin magnetization of localized electrons

Populations of the energy levels are given by Boltzmann statistics; o exp{-E/kgT}. The

thermodynamic average (77) is evaluated from these Boltzmann populations.

-l - el el el -l

-----------
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(77) = [ugexp(x) - ugexp(-x)] ,,
[oxp() +exp(x)] 1O e
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Note that to approach saturation x = 2
At T =300 K, py,H.=900T
AtT = IK, pH. = 3K. i

0 2 4

Useful conversion | Tug = 0.672 (pg/kp)
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Curie-law susceptibility of localized electrons

In small fields, tanh(x) = x, hence the susceptibility

v = N(72)H (N is no of electrons m-3) 1/ A

X = HoNug?/kgT

Slope C
This is the famous Curie law for susceptibility, which varies as T-'.

In other terms

¥ = CIT, where | C= p,Nug?k;

is a constant with dimensions of temperature;
Assuming an electron density N of 6 1028 m-3 gives a Curie constant C = 0.5 K.
The Curie law susceptibility at room temperature is of order 10-3.
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3. Spin precession and resonance

s
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Electrons in a field; paramagnetic resonance

my

S

s="% 12 / hf
QOMBH ¢

-1/2

At room temperature there is a very slight difference in thermal populations of the two
spin states (hence the very small spin susceptibility of 103). The relative population
difference is x = gu ugH/2k,T

At resonance, energy is absorbed from the rf field until the populations are equalized.

The resonance condition is hf = guy,ugH
flugH = gug/h [= geh/2m_ h = e/2 T m ]

Spin resonance frequency is 28 GHz T/
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Electrons in a field - Larmor precession

m= vyl [y=-e/m]

I’ =mxB

I' =dl/dt (Newton’s law)

dm/dt=ymxB

=Y

e e e,

m, my, m,
0 0 B,

I’ =mxB

dm,/dt =ymB, dm/dt=-ymB, dm,/dt=0

Solution is m(t) = m ( sin cosw, t, sinO sinwt, cosO )
where w, = vyB,

Magnetic moment precesses at the Larmor precession frequency ‘f,_ =vyB/2x ‘

dM/dt = yM x B — ore,, x dM/dt 28 GHz T-! for spin
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Electrons in a field — Cyclotron resonance

Free electrons follow cyclotron orbits in a magnetic field.
Electron has velocity v then it experiences a Lorentz force

F=-evxB

The electron executes circular motion about the direction of B
(tracing a helical path if v = 0)

Cyclotron frequency f_= v, /2mr

C

f. = eB/2;wm,

Electrons in cyclotron orbits radiate at the cyclotron frequency

Example: — Microwave oven

Since vy, = -(e/m,), the cyclotron and Larmor and epr frequencies
are all the same for electrons; 28.0 GHz T-!

A 4
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4. The free electron gas

e
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Free electron model

We apply quantum mechanics to the electrons. They have spin 2, and thus there are two
magnetic states,m, = /2 (spinup 1) and m;=- "2 (spin down |), for every electron.

Suppose the electrons are confined in a box of volume V, where the potential is constant, U,

Electrons are represented by a wavefunction 1(r) where y*(r)y(r)dV is the probability of
finding an electron in a volume dV.

Schrodinger’ s equation Hop(r) = E y(r)

{p?2m + U hp(r) = E y(r) but p — -iAV

{- B*V22m + U }y(r) = Ey(r)

Solutions are P, (r) = (1/V'2) exp ik.r
\ \

Normalization  wave vector

The wave vector of the electron k = 2w/A  Its momentum; -iaVy(r) = aky(r) , is 7k.
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Free electron model

Only certain values of k are allowed. The boundary
condition is that L is an integral number of wavelengths.

k = 0, +27t/L, 4L, +6m/L ........

A
Y

The allowed states are represented by points in k-space

L
E-U, There is just one state in each volume (2mt/L)? of k-space,
Free -electron And at most two electrons, one spin up 1 and one spin
parabola down |, can occupy each state. Electrons are fermions.

The energy of an electron in the box is E = p?/2m,

E, = (hk)22m, + U,
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Free electron model

The points in k-space are very closely spaced; There are N
~ 1022 electrons in a macroscopic sample, so k is
effectively a continuous variable.

At temperature T = 0, we fill up all the lowest energy
states, with two electrons per state, up to the Fermi level.
The energy of the last electron is the Fermi energy E..

The wavelength of the last electron is the Fermi
wavelength k..

The N occupied states are contained within the Fermi
surface. In the free-electron model this surface is a sphere.

We calculate E.| N = (47/3)k3 x 2/(2n/L)3 — ke = (3n2N/V)!/3
B,
(E; - Uy) = (fikp)?/2m = (72/2m) (3t?n)¥3 where n = N/V 4 X

For Cu, (Er-U,) = 7eV.

T is defined by kT, = E.. For Cu, T, = 80,000 K (I eV =11605 K) w/

The Fermi velocity vp = 7ikg/m

For Cu,vp= 1.6 106 m s*!
The Fermi surface of

copper.
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Free electron model

D(E) A useful concept is the density of states, the number of
states per unit sample volume, as a function of k or E.
The number between k and k + 0k is
D(k)dok = 4nk?dk (L/2m)3 x 2
Now E = 72k2/2m — OE/dk = #%k/m
The number between E and E + OE is
D(E)SE = 4nk?(L/2m)3 x 2/(h*k/m) OE

D(E)SE = (Vm/n2h2)(2mE/h2) 25E

E

At the Fermi level * | D(E;) = (3/2)n/E;| Units of D(E;) are states |- m-3 ( or states eV-! m-3)

State occupancy when T > 0 is given by the Fermi function
f(E) f(E) = 1/[exp(E - w)/kgT + 1] (5)
<__> kg T The chemical potential u is fixed by [,* f(E)dE = |

Note: u = E; at T = 0;also j = (0/e)Vu
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Electronic specific heat

Some physical properties can be explained solely in terms of the density of states at the
Fermi level D(E;)

Only electrons within ~ k;T of the Fermi level can be thermally excited.
The number of these electrons is D(E;) kgT
The increase in energy U(T) - U(0) is ~ D(E;) (kgT)?

C, = dU/dT = 2D(E;) kg2T D(E)
The exact resultis  C_ = (?/3)D(E;) k?T =T //
When T << @4 (the Debye temperature) o
C=yT + \|3T3 kg T \
Electronic contribution Lattice contribution EF

Note that the electronic entropy S_ = [,T (C/T ) dT  [recall 8Q =ToS]

According to the third law of thermodynamics,S— 0asT— 0
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Pauli susceptibility

We now show the 1 and | density of states separately. They split in a field B = u,H

D, ()

E

The splitting is really very small, ~ 10> of the bandwidth in a field of | T.

M = pg(Ny - NIV Note M is magnetic moment per unit volume
AtT = 0, the change in population in each band is AN = "2 D(E;)u,ugH
M =2us AN = D(E)uoug?H The dimensionless susceptibility x = M/H

Ypauli = DP(Ep)Uoug® | Itis ~ 10> and independent of T
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Landau diamagnetism

In the free-electron model, D(E;) = (3/2)n/E;

Hence p,,i = {3nuoug?/2E:}[1 + cT? + ...] (Compare Curie law nuyug?/kgT)
The ratio of electronic specific heat coefficient to Pauli susceptibility in the nearly-free,
independent electron approximation should be a constant R.
Free electron model was used by Landau to calculate the orbital diamagnetism of
conduction electrons. The result is:

XL = —Ngpy/2kpTF

exactly one third of the Pauli susceptibility,and opposite in sign.

The real band structure is taken into account in an approximate way by renormalizing the
electron mass. Replace m_ by an effective mass m*

Then L = -(1/3)(m /m*) ¥

In some semimetals such as graphite or bismuth, m* can be = 0.01 m_, hence the
diamagnetism of the conduction electrons may sometimes be the dominant contribution to

the susceptibility. (x, = -4 10-* for graphite)
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Landau diamagnetism

0.2 20x10°°
=) :
g 5
2 S 10x10°®
8 3
3 0.1 S
= o
- 3
2 = | Dt
S k ¢
0 k + 1 + + i
0 100 200 300 0 100 200 300

Temperature, T (K)

Curie

Temperature, 7 (K)

Pauli

2x107%;

L

11051

Landau susceptibility,

-3x10-%

— -5 + + '
11074 100 200 300

Temperature, T (K)

Landau
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Density of states in other dimension
3-d solid 15(8) x €1

ﬁ( € ) = constant

\ ey e

(c) Discreet levels

Confinement of the
free-electron gas: (a) in
two dimensions, (b) in one
dimension - a quantum
wire, and (¢) in zero
dimensions - a quantum
dot.
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Quantum oscillations

LetB=B, A=(0,xB,0), V(r) =0and m =m* Canonical momentum p = p - qgA

[p)zc + (py + exB)* + p?]w =&,
’E,J[JI:I]IE!H':#HE&“E

Schrodinger’ s equation
2m*

R d* 1
_Zm* E + Em*wc(:ﬂ - Il]f] I;‘?{E] — Efw(jj}

w, = eB/m¥, x,=-hk/eB E =E-(h%2m)k>

B
E’=En= 1 IF:II.'LI'.J,.:
(n+3) _,r [ }
hlk? 1 —
E=_—4(n+ =)hw, l
ome T (M 3) AR
b

The motion is a plane wave along Oz, plus a simple harmonic oscillation at f.= w_/2,
in the plane, where w_ = eB/m,

ESM Cluj 2015



De Haas van Alfen effect

When a magnetic field is applied, the states in the Fermi sphere collapse onto a series
of tubes. Each tube corresponds to one Landau level (n - value). As the field increases,
the tubes expand and the outer one empties periodically as field increases.
An oscillatory variation in 1/B? of magnetization (de Haas - van Alphen effect) or of
conductivityk(Shubnikov - de Haas effect) appears.

i

From the period, it is possible to deduce the
cross section area of the Fermi surface normal to
the tubes.
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Theory of electronic magnetism

Maxwell’ s equations relate magnetic and electric fields to their sources. The other fundamental
relation of electrodynamics is the expression for the force on a moving particle with charge q,

F =q(E + vAB)
The two terms are respectively the Coutomband Lorentz forces. The latter gives the torque equation I
= mAB The corresponding-Hamtiltontan—fer the particle in a vector potential A representing the
magnetic field B (B = VAA) and a scalar potential ¢, representing the electric field E (E =-V¢,) is

F{ = (1/2m)(p - gA)? +q0,
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Orbital moment

The Hamiltonian of an electron with electrostatic potential energy V(r) = -ed, is

H=(12m)(p + eA)? +V(r)
Now (p + eA)? = p? + e?A? + 2eA .p since A and p commute when V.A = 0. So

H=[p*2m +V(r)] + (e¢/m)A.p + (e2/2m)A2

H=H,+ H + H,
where 74, is the unperturbed Hamiltonian, 7/ gives the paramagnetic response of the orbital moment
and #4, describes the small diamagnetic response. Consider a uniform field B along z. Then the vector
potential in component form is A = (1/2) (-By, Bx, 0),
so B=VAA=¢e,(dA/0x - dA,/dy) =e,B. More generally

A = (1/2)Bar Now
(e/m)A.p = (e2m)Barp = (e2m)B.rap = (e/2m)B.l since I = rap. The second terms in the
Hamiltonian is then the Zeeman interaction for the orbital moment

H | = (ug/h)B.1

The third term is (e?/8m) (Bar)? = (€*/8m?)B?*(x?+y?). If the orbital is spherically symmetric, <x’>=
<y>>= <r>>/3.The corresponding energy E = (e?B%*/12m) <r?>>. Since M = -0E/dB and susceptibility y =
HoNM/B,

It follows that the orbital diamagnetic susceptibility is = p,Ne? <r’>>/6m.
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Spin moment

The time-dependent Schrodinger equation
-(R?2m)V> + Vy = iliohp/ot

is not relativistically invariant because the operators d/dt and d/0x do not appear to the same power. We
need to use a 4-vector X = (ct, X, y, z) with derivatives d/0X.

Dirac discovered the relativistic quantum mechanical theory of the electron, which involves the Pauli spin
operators O;, with coupled equations for electrons and positrons. The nonrelativistic limit of the theory,
including the interaction with a magnetic field B represented by a vector potential A can be written as

H=[(12m)(p + eA)? +V(r)] - p*/8m3c? + (e/m)B.s + (1/2m2c?r)(dV/dr) - (1/4m2c2)(dV/dr) 9/dr
*The second term is a higher-order correction to the kinetic energy

*The third term is the interaction of the electron spin with the magnetic field, so that the complete
expression for the Zeeman interaction of the electron is

H, = (ug/M)B.(I + 25)
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Spin moment

The factor 2 is not quite exact. The expression is 2(1 + a/2m - .....) =2.0023, where a = e?/4me he= 1/137
is the fine-structure constant.

e The fourth term is the spin-orbit ineteraction., which for a central potential V(r) = -Ze?/4me,r with Ze as
the nuclear charge becomes -Ze?ul.s/8mm?r? since g, = 1/c2. In an atom <1/r>> = (0.1 nm)? so the
magnitude of the spin-orbit coupling A is 2.5 K for hydrogen (Z = 1), 60 K for 3d elements (Z = 25), and
160 K for actinides (Z = 65).

In a noncentral potential, the spin-orbit interaction is (SAVV).p

e The final term just shifts the levels when 1 =0
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Magnetism and relativity

The classification of interactions according to their relativistic character is based on
the kinetic energy

E = mcV[1 + (v3/c?)]

The order of magnitude of the velocity of electrons in solids is ac. Expanding the
equation in powers of ¢

E = mc?+ (1/2)o*mc? - (1/8)a*mc?

Here the rest mass of the electron, mc?= 511 keV; the second and third terms, which
represent the order of magnitude of electrostatic and magnetostatic energies are

respectively 13.6 eV and 0.18 meV. Magnetic dipolar interactions are therefore of
order 2 K. (1 eV = 11605 K)
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:] Nonmetal Diamagnet

" Me

Radioactive

X
. PTh P'Pa U
232.0 231.0 238 0 238 0

4+ 5f° 5+50 | 4+5f
L

5+ 572

Magnetic atom
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Ferromagnet T > 290K

S Paramagnet D Antiferromagnet with Ty, > 290K

AT H M H AT
H Magnetic Periodic Table "He
1.00 4.00
. (7 e~ )
Atomic Number — 66D .
<— Atomic symbol
—— y / Y A a Ve NI
3Li 4Be 1625 [*— Atomic weight °B 6C N 80 °F IONle
6.94 9.01 Typical ionic change —>3+4f 10.81 12.01 14.01 16.00 19.00 20.18
I + 20 2+ 20 Antiferromagnetic T(K) — Ferromagnetic T(K)
\ AN A I\ /> <
>”Na<>'2Mg ‘ (3AL1 Y4si Yisp  Yies  ('7¢l Yi8Ar
22.99 2421 26.98 28.09 30.97 32,07 35.45 39.95
| +3s° 2 + 3s° 3+ 2pf
\_ AN AN AN S
>_<>_<( Y3 . Y5 a5 ) Y3 YA YA A \>—<
DK Y2°Ca 2'Sc 12Ti 2V 30Zn 'Ga 2Ge [3As 3‘Se [35Br [3¢Kr
3821 40.08 44.96 47.88 50.94 : ! ) 65.39 69.72 72.61 74.92 78.96 79.90 83.80
| + 450 2 + 450 3 + 3d° 4+ 3d° 3 + 3d? 3+ 3d° 2+ 3d’ 2+3d'0 |3+3d'°
\ A A A A A y, 5 * e A A y, A A 2 y
(37Rb 38Sr 13°Y Y%°Zr F*'Nb /Mo ) Y8Cd ¥In °Sh P'Sb [52Te 131 [54Xe
85.47 87.62 88.91 91.22 92.91 95.94 107.9 112.4 114.8 118.7 121.8 127.6 126.9 83.80
I +550 |2+50 [2+4d° |4+4d® |5+4d |5+4d
e
Cs [|**Ba [*La |7?Hf |*Ta 74W 5Re Qs |"Ir
132.9 137.3 138.9 178.5 180.9 183.8 186.2 190.2 192.2
l+60 |2+6s° |3+4f |[4%58° |5+58° [6+50 [4+548 |3+54 [4+50
\ A A
B7Fr ®%Ra [Ac
223 226.0 227.0
2+78° | 3+5f b= a2 Y5 2"
58 59 60 62 69 70 71
L Ce |”’Pr [*°Nd Sm Tm|®Yb |/'Lu
140.1 140.9 144.2 [ 150.4 168.9 173.0 175.0
4 + 4f° 3 +4f 3 +4f 3+42 | 3+43

Antiferromagnet/Ferromagnet with T /T <290 K




