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This series of three lectures covers basic concepts in magnetism; 
Firstly magnetic moment, magnetization and the two magnetic 
fields are presented. Internal and external fields are distinguished. 
The main characteristics of ferromagnetic materials are briefly 
introduced. Magnetic energy and forces are discussed. SI units 
are explained, and dimensions are given for magnetic, electrical 
and other physical properties. 

Then the electronic origin of paramagnetism of non-interacting 
electrons is calculated in the localized and delocalized limits. The 
multi-electron atom is analysed, and the influence of the local 
crystalline environment on its paramagnetism is explained. 

Assumed is an elementary knowledge of solid state physics, 
electromagnetism and quantum mechanics. 



  1.  Magnetism of the electron 
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Einstein-de Hass Experiment 

Demonstrates the relation between magnetism and angular momentum.

A ferromagnetic rod is suspended on a torsion 
fibre. 

The field in the solenoid is reversed, switching the 
direction of magnetization of the rod. 

An angular impulse is delivered due to the reversal 
of the angular momentum of the electrons- 
conservation of angular momentum.

Ni has 28 electrons, moment per Ni is that of 0.6e 

Three huge paradoxes;   — Amperian surface currents

100 years ago           — Weiss molecular field

          — Bohr - van Leeuwen theorem
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The electron

The magnetic properties of solids derive essentially from the magnetism of their electrons. 
(Nuclei also possess magnetic moments, but they are ≈ 1000 times smaller).

 An electron is a point particle with:
mass                    me = 9.109 10-31 kg
charge          -e = -1.602  10-19 C
intrinsic angular momentum (spin)  ½ħ =  0.527 10-34 J s

On an atomic scale, magnetism is always associated with angular momentum. Charge is 
negative, hence the angular momentum and magnetic moment are oppositely directed

(a) (b)

← ←

Orbital moment Spin

m 

 

l I

The same magnetic moment, 
the Bohr Magneton,  

 µB = eħ/2me = 9.27 10-24 Am2 

is associated with ½ħ of spin 
angular momentum or ħ of 
orbital angular momentum 
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Origin of Magnetism 

1930 Solvay conference

At this point it seems that the whole of chemistry and much of physics is understood in principle. The problem 
is that the equations are much to difficult to solve…..                               P. A. M. Dirac

                                              
ESM Cluj 2015



Orbital and Spin Moment 

Magnetism in solids is due to the angular momentum of 
electrons on atoms.

Two contributions to the electron moment:

•  Orbital motion about the nucleus

•  Spin- the intrinsic (rest frame) angular          
m        momentum.

           m = - (µB /ħ)(l + 2s)

(a) (b)

← ←

(a) (b)

← ←
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Orbital moment 

Circulating current is I;  I = -e/τ = -ev/2πr

The moment* is m = IA  m = -evr/2

Bohr: orbital angular momentum l is quantized in units of  
ħ; h is Planck’s constant = 6.626 10-34 J s; 
ħ = h/2π = 1.055 10-34 J s.    |l| = nħ

Orbital angular momentum:         l = mer x v                     Units:  J s 

Orbital quantum number l,  lz= mlħ  ml =0,±1,±2,...,±l so   mz = -ml(eħ/2me)
The Bohr model provides us with the natural unit of magnetic moment

Bohr magneton   µB = (eħ/2me)   µB =  9.274 10-24 A m2      mz = mlµB

In general   m = γl γ = gyromagnetic ratio      Orbital motion     γ = -e/2me

* Derivation can be generalized to noncircular orbits: m = IA  for any planar orbit. 
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g-factor; Bohr radius; energy scale 

The g-factor is defined as the ratio of magnitude of m in units of µB  to magnitude of l 
in units of ħ.

g = 1 for  orbital motion

The Bohr model also provides us with a natural unit of length, the Bohr radius

a0 = 4πε0ħ2/mee2   a0 = 52.92 pm

and a natural unit of energy, the Rydberg R0 

      R0 = (m/2ħ2)(e2/4πε0)2                    R0 = 13.606 eV
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Spin moment 

Spin is a relativistic effect.
Spin angular momentum s
Spin quantum number   s        s = ½ for electrons
Spin magnetic quantum number ms      ms = ±½ for electrons 

 
sz = msħ         ms= ±½ for electrons

For spin moments of electrons we have:
γ = -e/me g ≈ 2

m = -(e/me)smz = -(e/me)msħ = ±µB

         More accurately, after higher order corrections:  g = 2.0023  mz = 1.00116µB

m = - (µB/ħ)(l + 2s)

An electron will usually have both orbital and spin angular momentum 
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Quantized mechanics of spin

In quantum mechanics, we represent  physical observables by operators – differential or matrix.

e.g. momentum p = -iħ∇;  energy p2/2me = -ħ2∇2/2me  

n magnetic basis states ⇒ n x n Hermitian matrix,  Aij=A*
ji  

 Spin operator (for s = ½ )

s = σħ/2

Pauli spin matrices

Electron: s = ½  ⇒ ms=±½   i.e spin down and spin up states
Represented by column vectors: |↓〉 =      |↑〉 =   s |↑〉 = - (ħ/2) |↑〉 ;    s|↓〉 =  (ħ/2)|↓〉 

 

Eigenvalues of s2:  s(s+1)ħ2 

The fundamental property of angular momentum in QM is that the operators satisfy the commutation relations:

or

Where [A,B] = AB - BA  and [A,B] = 0 ⇒ A and B’s eigenvalues can be measured simultaneously [s2,sz] = 0

ESM Cluj 2015 



Quantized spin angular momentum of the electron

-1/2

 1/2

msS

z

g√[s(s+1)]ħ2

H 1/2

 1/2

s = ½ 

- 

- 

2µ0µBH

-ħ/2

  ħ/2

The electrons have only two eigenstates, ‘spin up’(↑, ms = -1/2) and ‘spin down’ (↓, ms = 
1/2), which correspond to two possible orientations of the spin moment relative to the 
applied field. 
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  2.  Paramagnetism of localized electrons 
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Populations of the energy levels are given by Boltzmann statistics; ∝ exp{-Ei/kΒT}. The 
thermodynamic average 〈m〉 is evaluated from these Boltzmann populations.

〈m 〉 = [µBexp(x) - µBexp(-x)]
[exp(x) + exp(-x)]

       where x = µ0µBH/kBT. 

〈m 〉 = µBtanh(x)

Note that to approach saturation x ≈ 2
At T = 300 K, µ0H. = 900 T
At T = 1K , µ0H. = 3 K.

 Useful conversion 1 TµB = 0.672 (µB/kB)

Spin magnetization of localized electrons
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In small fields, tanh(x) ≈ x, hence the susceptibility 

   χ = N〈m 〉/H   (N is no of electrons m-3)

   χ = µ0NµB
2/kBT

This is the famous Curie law for susceptibility, which varies as T-1.

In other terms 
χ = C/T,   where    C = µ0NµB

2/kB 

is a constant with dimensions of temperature; 
Assuming an electron density N of 6 1028 m-3 gives a Curie constant C ≈ 0.5 K.   
The Curie law susceptibility at room temperature is of order 10-3. 

Curie-law susceptibility of localized electrons

T

1/χ

Slope C
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  3.  Spin precession and resonance 
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Electrons in a field; paramagnetic resonance

1/2

 1/2

ms S

s = ½ 

- 

gµ0µBH

At room temperature there is a very slight difference in thermal populations of the two 
spin states (hence the very small spin susceptibility of 10-3). The relative population 
difference is x = gµ0µBH/2kBT  
At resonance, energy is absorbed from the rf field until the populations are equalized.

The resonance condition is hf = gµ0µBH
          f/µ0H = gµB/h [= geħ/2meh = e/2πme] 

Spin resonance frequency is 28 GHz T-1

 

hf
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 m =  γl    [γ = -e/me]

  Γ  = m x B

  Γ  = dl/dt (Newton’s law)

    dm /dt = γ m x B

            

= γ  ex   ey   ez

        mx my mz

         0     0    Bz

 

        Solution is m(t) = m ( sinθ cosωLt, sinθ sinωLt, cosθ )      
where ωL = γBz

Magnetic moment precesses at the Larmor precession frequency      fL = γB/2π  

 dM/dt = γM x B – αeM x dM/dt                 28 GHz T-1 for spin

Γ  = m x B

m 

BZ

dl/dt

dmx/dt = γmyBz      dmy/dt = -γmxBz       dmz/dt = 0 

θ

 

Electrons in a field - Larmor precession
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Free electrons follow cyclotron orbits in a magnetic field.
Electron has velocity v then it experiences a Lorentz force

                                    F = -ev × B

The electron executes circular motion about the direction of B 
(tracing a helical path if v|| ≠ 0)

Cyclotron frequency     fc = v⊥/2πr 

         fc = eB/2πme 

Electrons in cyclotron orbits radiate at the cyclotron frequency 

Example:   — Microwave oven

Since γe = -(e/me), the cyclotron and Larmor and epr frequencies 
are all the same for electrons;  28.0 GHz T-1 

Electrons in a field – Cyclotron resonance
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  4.  The free electron gas   
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We apply quantum mechanics to the electrons. They have spin ½ , and thus there are two 
magnetic states, ms = ½  (spin up ↑) and ms = - ½   (spin down ↓), for every electron.

Suppose the electrons are confined in a box of volume V, where the potential is constant, U0 
Electrons are represented by a wavefunction ψ(r) where ψ*(r)ψ(r)dV is the probability of 
finding an electron in a volume dV. 

Schrödinger’s equation     Hψ(r) = E ψ(r) 

{p2/2m + U0}ψ(r) = E ψ(r) but p → -i!∇ 
 

         {- !2∇2/2m + U0}ψ(r) = E ψ(r) 

Solutions are              ψk(r) = (1/V1/2) exp ik.r

Normalization     wave vector           

The wave vector of the electron k = 2π/λ      Its momentum; -i!∇ψ(r) =  !kψ(r) , is !k. 

Free electron model



Only certain values of k are allowed. The boundary 
condition is that L is an integral number of wavelengths. 

         ki = 0, ±2π/L, ±4π/L, ±6π/L ……..

The allowed states are represented by points in k-space

There is just one state in each volume (2π/L)3 of k-space,
And at most two electrons, one spin up ↑ and one spin 
down ↓, can occupy each state. Electrons are fermions.

The energy of an electron in the box is  E = p2/2me

Ek = (!k)2/2me  + U0

L

E - U0

k

Free -electron 
parabola

Free electron model
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The points in k-space are very closely spaced;  There are N 
~ 1022 electrons in a macroscopic sample, so k is 
effectively a continuous variable.
   At temperature T = 0, we fill up all the lowest energy 
states, with two electrons per state, up to the Fermi level.
The energy of the last electron is the Fermi energy EF. 
The wavelength of the last electron is the Fermi 
wavelength kF. 
The N occupied states are contained within the Fermi 
surface. In the free-electron model this surface is a sphere.

kx

●   ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ● 

●   ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●

●   ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●

●   ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●

●   ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●

●   ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●

●   ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ● 

●   ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ● 

●   ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ● 

ky

We calculate EF.  N  = (4π/3)kF
3 x 2/(2π/L)3 → kF = (3π2N/V)1/3

    (EF - U0) = (!kF)2/2m = (!2/2m) (3π2n)2/3  where n = N/V

 For Cu,    (EF - U0) ≈ 7 eV.    

TF is defined by kTF = EF.  For Cu, TF ≈ 80,000 K (1 eV =11605 K)

The Fermi velocity vF = !kF/m  For Cu, vF ≈ 1.6 106 m s-1  

Free electron model
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A useful concept is the density of states, the number of 
states per unit sample volume, as a function of k or E.
The number between k and k + δk is 

 D ( k ) δ k = 4 π k 2 δ k ( L / 2 π ) 3 x 2   
Now E = !2k2/2m → δE/δk = !2k/m
The number between E and E + δE is 

 D(E)δE = 4πk2(L/2π)3 x 2/(!2k/m) δE

 D(E)δE  = (Vm/π2!2)(2mE/!2)1/2δE 
E

At the Fermi level *   D(EF) = (3/2)n/EF        Units of D(EF) are states J- m-3 ( or states eV-1 m-3) 

State occupancy when T > 0 is given by the Fermi function

f(E) = 1/[exp(E - µ)/kBT + 1] (5)

The chemical potential µ is fixed by ∫0∞ f(E)dE = 1

Note: µ = EF at T = 0; also j = (σ/e)∇µ

D(E)

E

f(E)

kBT

Free electron model     
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Some physical properties can be explained solely in terms of the density of states at the 
Fermi level D(EF)

Only electrons within ~ kBT of the Fermi level can be thermally excited.
The number of these electrons is D(EF) kBT
The increase in energy U(T) - U(0) is ~ D(EF) (kBT)2

Cel = dU/dT ≈ 2D(EF) kB
2T

     The exact result is      Cel = (π2/3)D(EF) kB
2T  = γT

     When T << ΘD (the Debye temperature) 
C = γT  + βT3

 

Note that the electronic entropy Sel = ∫0T (Cel/T’) dT’   [recall δQ = TδS]

According to the third law of thermodynamics, S→ 0 as T→ 0 

.

Electronic contribution Lattice contribution EF E

D(E)

 kBT

Electronic specific heat



D↑,↓(E)

EE

↓

↑ EE

↓

↑

H

±µ0µBH

EF

The splitting is really very small, ~ 10-5 of the bandwidth in a field of 1 T.

M = µB(N↑ - N↓)/V Note M is magnetic moment per unit volume
At T = 0, the change in population in each band is ΔN = ½ D(EF)µ0µBH       

M = 2µB ΔN  = D(EF)µ0µB
2H     The dimensionless susceptibility χ = M/H

χPauli = D(EF)µ0µB
2    It is ~ 10-5  and independent of T

Pauli susceptibility

We now show the ↑ and ↓ density of states separately.  They split in a field B = µ0H
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Landau diamagnetism

Free electron model was used by Landau to calculate the orbital diamagnetism of 
conduction electrons. The result is:

exactly one third of the Pauli susceptibility, and opposite in sign. 

The real band structure is taken into account in an approximate way by renormalizing the 
electron mass. Replace me by an effective mass m*

Then χL = -(1/3)(me/m*) χP

In some semimetals such as graphite or bismuth, m* can be   ≈ 0.01 me, hence the 
diamagnetism of the conduction electrons may sometimes be the dominant contribution to 
the susceptibility. (χL = -4 10-4 for graphite)

In the free-electron model, D(EF) = (3/2)n/EF 
Hence   χPauli = {3nµ0µB

2/2EF }[1 +  cT2 + ….]  (Compare Curie law nµ0µB
2/kBT)

The ratio of electronic specific heat coefficient to Pauli susceptibility in the nearly-free, 
independent electron approximation should be a constant R.
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Landau diamagnetism

Curie         Pauli              Landau
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Density of states in other dimension
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D(ε) ∝ ε1/2

D(ε) = constant

D(ε) ∝ ε-1/2

Discreet levels

3-d solid



Let B = Bz,  A = (0, xB, 0),  V(r) = 0 and m = m*    Canonical momentum p = p - qA

Schrodinger’s equation

ωc =  eB/m*,   x0 = -ħky/eB   E’ = E - (ħ2/2me)kz
2

  

The motion is a plane wave along Oz, plus a simple harmonic oscillation at fc = ωc/2,  
in the plane, where ωc = eB/me

Quantum oscillations

ESM Cluj 2015 

89 3.3 Theory of electronic magnetism

lowest in energy, due to the negative charge of the electron. The Hamil-
tonian (3.58) therefore gives an average orbital magnetic moment ⟨mz⟩ =∑ℓ

−ℓ −mℓµB exp(−mℓµBB/kBT )/
∑ℓ

−ℓ exp(−mℓµBB/kT ), and an orbital
susceptibility n⟨mz⟩/H , where n is the number of atoms per cubic metre.

The third term in (3.58) is (e2/8me)(B × r)2 = (e2/8me)B2(x2 + y2). If the
electron orbital is spherically symmetric, ⟨x2⟩ = ⟨y2⟩ = 1

3 ⟨r2⟩, so the energy
corresponding to H2 is ε = (e2B2/12me)⟨r2⟩. This is the Gibbs free energy,
because the Hamiltonian depends on the applied field B = µ0H. Hence from
(2.101) m = −∂ε/∂B. The diamagnetic susceptibility µ0nm/B is

χ = −nµ0e
2⟨r2⟩/6me, (3.61)

in agreement with the semiclassical expression (3.31).

3.3.2 Quantum oscillations

We now examine the diamagnetic response of the free-electron gas in more
detail. The Hamiltonian of an electron in a magnetic field without the spin part
is (3.57). Choosing a gauge A = (0, xB, 0) to represent the magnetic field,
which is applied as usual in the z-direction, and setting V (r) = 0 and me = m∗

we have Schrödinger’s equation

1
2m∗

[
p2

x + (py + exB)2 + p2
z

]
ψ = εψ, (3.62)

where pi = −ih̄∂/∂xi. It turns out that the y and z components of p commute
with H, so the solutions of this equation are plane waves in the y- and z-
directions,with wave function ψ(x)eikyyeikzz. Substituting ψ(x, y, z) back into
Schrödinger’s equation, we find

[
− h̄2

2m∗
d2

dx2
+ 1

2
m∗ω2

c(x − x0)2
]

ψ(x) = ε′ψ(x), (3.63)

where ωc = eB/m∗ is the cyclotron frequency, x0 = −h̄ky/eB and ε′ =
ε − (h̄2/2m)k2

z . Equation (3.63) is the equation of a one-dimensional har-
monic oscillator, with motion centred at x0. The oscillations are at the
cyclotron frequency for a particle of mass m∗. The eigenvalues of the oscil-
lator are ε′ = εn = (n + 1

2 )h̄ωc which are associated with the motion in the
xy-plane, and the energy levels labelled by the quantum number n are
known as Landau levels. The motion in the z-direction is unconstrained, so
that

ε =
h̄2k2

z

2m∗ +
(

n + 1
2

)
h̄ωc. (3.64)

The electron in the field, which classically follows the spiral trajectory, is rep-
resented in quantum mechanics by a plane wave along z and a one-dimensional



   

When a magnetic field is applied, the states in the Fermi sphere collapse onto a series 
of tubes. Each tube corresponds to one Landau level (n - value).  As the field increases, 
the tubes expand and the outer one empties periodically as field increases.         
An oscillatory variation in 1/B2 of magnetization (de Haas - van Alphen effect) or of 
conductivity (Shubnikov - de Haas effect) appears.

From the period, it is possible to deduce the 
cross section area of the Fermi surface normal to 
the tubes.

De Haas van Alfen effect
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Maxwell’s  equations  relate  magnetic  and  electric  fields  to  their  sources.  The  other  fundamental 
relation of electrodynamics is the expression for the force on a moving particle with charge q,

F = q(E + v∧B)
The two terms are respectively the Coulomb and Lorentz forces. The latter gives the torque equation Γ 
=  m∧B  The  corresponding  Hamiltonian  for  the  particle  in  a  vector  potential  A representing  the 
magnetic field B (B = ∇∧Α)  and a scalar potential φε representing the electric field E (E = -∇φe) is

H  = (1/2m)(p - qA)2 +qφe
 

Theory of electronic magnetism
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The Hamiltonian of an electron with electrostatic potential energy V(r) = -eφe is 
 H = (1/2m)(p + eA)2 +V(r)

Now (p + eA)2 = p2 + e2A2 + 2eA.p since A and p commute when ∇.A = 0. So
 H = [p2/2m +V(r)] + (e/m)A.p + (e2/2m)A2

 H = H 0 + H 1 + H 2 
where H0 is the unperturbed Hamiltonian, H1 gives the paramagnetic response of the orbital moment 
and H2 describes the small diamagnetic response. Consider a uniform field B along z. Then the vector 
potential in component form is A = (1/2) (-By, Bx, 0),
so B = ∇∧Α = ez(∂Ay/∂x - ∂Ax/∂y)  = ezB. More generally 

A = (1/2)B∧r  Now 
(e/m)A.p  =  (e/2m)B∧r.p   =  (e/2m)B.r∧p  =  (e/2m)B.l  since  l  =  r∧p.  The  second  terms  in  the 
Hamiltonian is then the Zeeman interaction for the orbital moment

 H 1 = (µB/!)B.l

The third term is (e2/8m) (B∧r)2 = (e2/8m2)B2(x2+y2). If the orbital is spherically symmetric, <x2>= 
<y2>= <r2>/3.The corresponding energy E = (e2B2/12m) <r2>. Since M = -∂E/∂B and susceptibility χ = 
µ0NM/B,
It follows that the orbital diamagnetic susceptibility is χ = µ0Ne2 <r2>/6m. 

 

Orbital moment
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Spin moment

The time-dependent Schrödinger equation 

-(!2/2m)∇2ψ + Vψ = i!∂ψ/∂t

is not relativistically invariant because the operators ∂/∂t and ∂/∂x do not appear to the same power. We 
need to use a 4-vector X = (ct, x, y, z) with derivatives ∂/∂X. 
Dirac discovered the relativistic quantum mechanical theory of the electron, which involves the Pauli spin 
operators σI, with coupled equations for electrons and positrons. The nonrelativistic limit of the theory, 
including the interaction with a magnetic field B represented by  a vector potential A  can be written as

H = [(1/2m)(p + eA)2 +V(r)] - p4/8m3c2 + (e/m)B.s + (1/2m2c2r)(dV/dr) - (1/4m2c2)(dV/dr) ∂/∂r

• The second term is a higher-order correction to the kinetic energy

• The third  term is  the  interaction  of  the  electron spin  with  the  magnetic  field,  so  that  the  complete 
expression for the Zeeman interaction of the electron is

 H Z = (µB/!)B.(l + 2s)
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The factor 2 is not quite exact. The expression is 2(1 + α/2π - .....)  ≈ 2.0023, where α = e2/4πε0hc≈ 1/137 
is the fine-structure constant.

•  The fourth term is the spin-orbit ineteraction., which for a central potential V(r) = -Ze2/4πε0r with Ze as 
the nuclear charge becomes -Ze2µ0l.s/8πm2r3 since µ0ε0 = 1/c2. In an atom <1/r3> ≈ (0.1 nm)3 so the 
magnitude of the spin-orbit coupling λ is 2.5 K for hydrogen (Z = 1), 60 K for 3d elements (Z ≈ 25), and 
160 K for actinides (Z ≈ 65).
In a noncentral potential, the spin-orbit interaction is (s∧∇V).p

•  The final term just shifts the levels when l = 0

 

Spin moment
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Magnetism and relativity

The classification of interactions according to their relativistic character is based on 
the kinetic energy

E = mc2√[1 + (v2/c2)]

The order of magnitude of the velocity of electrons in solids is αc.  Expanding the 
equation in powers of c

E = mc2 + (1/2)α2mc2 - (1/8)α4mc2

Here the rest mass of the electron, mc2 = 511 keV; the second and third terms, which 
represent  the  order  of  magnitude  of  electrostatic  and  magnetostatic  energies  are 
respectively 13.6 eV and 0.18 meV. Magnetic dipolar interactions are therefore of 
order 2 K. (1 eV = 11605 K)
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 2 + 3d7

    1390
     

28Ni
 58.69
 2 + 3d8

     629
     

29Cu
 63.55
 2 + 3d9

    

     

30Zn
 65.39
 2 + 3d10

    

     

31Ga
 69.72
 3 + 3d10

    

     

14Si
 28.09
    

     

32Ge
 72.61
    

     

33As
 74.92
    

     

34Se
 78.96
    

     

6 C
  12.01

     

7 N
  14.01

     

15P
 30.97
    

     

16S
 32.07
    

     

18Ar
  39.95
     

39Y
 88.91
 2 + 4d0

40Zr
 91.22
 4 + 4d0

41Nb
 92.91
 5 + 4d0

42Mo
 95.94
 5 + 4d1

43Tc
 97.9
 

44Ru
 101.1
 3 + 4d5

45Rh
 102.4
 3 + 4d6

46Pd
 106.4
 2 + 4d8

47Ag
 107.9
 1 + 4d10

48Cd
 112.4
 2 + 4d10

49In
 114.8
 3 + 4d10

50Sn
 118.7
 4 + 4d10

51Sb
 121.8
 

52Te
 127.6

53I
 126.9

57La
 138.9
 3 + 4f0

72Hf
 178.5
 4 + 5d0

73Ta
 180.9
 5 + 5d0

74W
 183.8
 6 + 5d0

75Re
 186.2
 4 + 5d3

76Os
 190.2
 3 + 5d5

77Ir
 192.2
 4 + 5d5

78Pt
 195.1
 2 + 5d8

79Au
 197.0
 1 + 5d10

61Pm
   145
 

70Yb
 173.0
 3 + 4f13

    

71Lu
 175.0
 3 + 4f14

    

90Th
  232.0
  4 + 5f0
      

91Pa
  231.0
  5 + 5f0
      

92U
  238.0
  4 + 5f2
      

87Fr
  223
 

88Ra
 226.0
 2 + 7s0

89Ac
 227.0
 3 + 5f0

62Sm
  150.4
 3 + 4f5
      105

66Dy
 162.5
 3 + 4f9

179   85

67Ho
 164.9
 3 + 4f10

132   20

68Er
 167.3
 3 + 4f11

 85   20

58Ce
  140.1
  4 + 4f0
      13

Ferromagnet TC > 290K

Antiferromagnet with TN > 290K

8 O
  16.00

    35

     

65Tb
  158.9
  3 + 4f8

229  221

64Gd
  157.3
 3 + 4f7

    292

63Eu
  152.0
  2 + 4f7

     90

60Nd
  144.2
  3 + 4f3

     19

66Dy
 162.5
 3 + 4f9

179   85

Atomic symbolAtomic Number

Typical ionic change
Atomic weight

Antiferromagnetic  TN(K) Ferromagnetic  TC(K)

Antiferromagnet/Ferromagnet with TN/TC < 290 K

 Metal

 Radioactive

Magnetic Periodic Table

80Hg
 200.6
 2 + 5d10

93Np
  238.0
  5 + 5f2
      

94Pu
   244

      

95Am
   243

      

96Cm
   247

      

97Bk
   247

      

98Cf
   251

      

99Es
   252

      

100Fm
     257

      

101Md
     258

      

102No
     259

      

103Lr
     260

      

36Kr
 83.80
    

     

54Xe
 83.80
    

     

81Tl
 204.4
 3 + 5d10

82Pb
 207.2
 4 + 5d10

83Bi
 209.0
 

84Po
  209
 

85At
  210
 

86Rn
  222
 

 Nonmetal Diamagnet

Paramagnet

BOLD Magnetic atom 

25Mn
 55.85
 2 + 3d5

      96
     

20Ca
 40.08
 2 + 4s0

     

13Al
 26.98
 3 + 2p6

    

     

69Tm
 168.9
 3 + 4f12

    56

ESM Cluj 2015


