

This is :: relevan m>± [-1	the originat state m?, an	in a is a rd	sf re he	nc	of e	BITA the	- f +1	orm L 1	<u>исніл</u> 4>=0.
Notice th	us in i	sa	tn	ins	in	on i	net	al	(012
(where	L=0,	2=	S	0	nd	9	= 2	.),	but
NOT in	4f lan	than	id	e	ie	ms.	W	ny ?	?
-	0							-	
-	ion	shell	S	L	J	term	p_1	p_{exp}	p_2
	ion Ti ³⁺ , V ⁴⁺	shell 3d ¹	$\frac{1}{2}$	L 2	$\frac{J}{\frac{3}{2}}$	$term^{2}D_{3/2}$	p_1 1.55	p _{exp} 1.70	$\frac{p_2}{1.73}$
	$\frac{1}{\frac{1}{100}}$	shell 3d ¹ 3d ²	$\frac{1}{2}$	L 2 3	$\frac{3}{2}$	term ${}^{2}D_{3/2}$ ${}^{3}F_{2}$	p_1 1.55 1.63	p _{exp} 1.70 2.61	p ₂ 1.73 2.83
	$\frac{\frac{1}{100}}{\frac{1}{100}}$	shell 3d ¹ 3d ² 3d ³	S	L 2 3 3	J ³ / ₂ 2 ³ / ₂ ³ / ₂	term ${}^{2}D_{3/2}$ ${}^{3}F_{2}$ ${}^{4}F_{3/2}$	p_1 1.55 1.63 0.77	p _{exp} 1.70 2.61 3.85	p ₂ 1.73 2.83 3.87
	$\begin{array}{c} & \\ \hline & \\ & \\$	shell 3d ¹ 3d ² 3d ³ 3d ⁴	S 1 1 3 2 2	L 2 3 3 2	J 2 2 3 2 0	${ m term}^{2}D_{3/2}$ ${}^{3}F_{2}$ ${}^{4}F_{3/2}$ ${}^{5}D_{0}$	p_1 1.55 1.63 0.77 0	p _{exp} 1.70 2.61 3.85 4.82	p2 1.73 2.83 3.87 4.90
	$\begin{array}{c} & \\ \hline & \\ & \\ &$	shell 3d ¹ 3d ² 3d ³ 3d ⁴ 3d ⁵	$\frac{1}{2}$ 1 $\frac{3}{2}$ 2 $\frac{5}{2}$	L 2 3 3 2 0	J 3 2 3 2 0 5 2	$\begin{array}{c} {}^{}}{}^{}}{}^{}{}^{}{}^{}{}^{}{}^{}{}^{}{}^{}{}^{}{}^{}{}^{}{}^{}{}^{}}}^{}{}^{}{}^{}{}^{}{}^{}{}^{}{}^{}{}^{}}}^{}{}^{}{}^{}{}^{}{}^{}{}^{}{}^{}{}^{}{}^{}}}^{}{}^{}}^{}{}^{}}^{}{}^{}}^{}{}^{}}^{}{}^{}}^{}{}^{}}^{}{}^{}}^{}{}^{}}^{}{}^{}}^{}{}^{}}^{}{}^{}}^{}{}^{}}^{}}^{}{}^{}^{}}^{}}^{}}^{}^{}}^{}^{}}^{}}^{}}^{}^{}}^{}^{}}^{}}^{}}^{}^{}}^{$	p_1 1.55 1.63 0.77 0 5.92	p_{exp} 1.70 2.61 3.85 4.82 5.82	p_2 1.73 2.83 3.87 4.90 5.92
	$\begin{array}{c} & & \\ & & \\ \hline & & \\ & &$	shell 3d ¹ 3d ² 3d ³ 3d ⁴ 3d ⁵ 3d ⁶	$\frac{1}{2}$ 1 $\frac{3}{2}$ 2 $\frac{5}{2}$ 2	L 2 3 2 0 2	$\frac{3}{2}$ 2 $\frac{3}{2}$ 0 $\frac{5}{2}$ 4	$\begin{array}{c} {}^{2}D_{3/2} \\ {}^{3}F_{2} \\ {}^{4}F_{3/2} \\ {}^{5}D_{0} \\ {}^{6}S_{5/2} \\ {}^{5}D_{4} \end{array}$	p_1 1.55 1.63 0.77 0 5.92 6.70	p_{exp} 1.70 2.61 3.85 4.82 5.82 5.82 5.36	p_2 1.73 2.83 3.87 4.90 5.92 4.90
	$\begin{array}{c} \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$	shell 3d ¹ 3d ² 3d ³ 3d ⁴ 3d ⁵ 3d ⁶ 3d ⁷	$\frac{1}{2}$ 1 $\frac{3}{2}$ 2 $\frac{5}{2}$ 2 $\frac{3}{2}$	L 2 3 2 0 2 3	$\frac{J}{2}$ 2 $\frac{3}{2}$ 0 $\frac{5}{2}$ 4 $\frac{9}{2}$	$\begin{array}{c} {}^{2}D_{3/2} \\ {}^{3}F_{2} \\ {}^{4}F_{3/2} \\ {}^{5}D_{0} \\ {}^{6}S_{5/2} \\ {}^{5}D_{4} \\ {}^{4}F_{9/2} \end{array}$	p_1 1.55 1.63 0.77 0 5.92 6.70 6.63	pexp 1.70 2.61 3.85 4.82 5.82 5.36 4.90	p2 1.73 2.83 3.87 4.90 5.92 4.90 3.87

27/08/2015

