

Distribution functions		
$f_{\mathbf{k}}(\mathbf{R},\delta t) = f_{\mathbf{k}+\frac{e\mathbf{E}}{\hbar}\delta t}(\mathbf{R}-\mathbf{v}_{\mathbf{k}}\delta t)$	electron dist	ribution function
$\frac{df}{dt} = \left(\mathbf{v}_{\mathbf{k}} \cdot \frac{\partial}{\partial \mathbf{R}} + \frac{e\mathbf{E}}{\hbar} \frac{\partial}{\partial \mathbf{k}}\right) f_{\mathbf{k}}(\mathbf{R})$	$-\left(\frac{\partial f}{\partial t}\right)_{\text{scatt}} = 0 \qquad \text{B}$	teady state oltzmann equation
$f_{\mathbf{k}}(\mathbf{R}) \approx f_{0}(\varepsilon, \mathbf{R}) \big _{\varepsilon=\varepsilon_{\mathbf{k}}} + \frac{\partial f_{0}(\varepsilon, \mathbf{R})}{\partial \varepsilon} \big _{\varepsilon=\varepsilon_{\mathbf{k}}}$	g _k (R) lii	nearization
$f_0(\varepsilon, \mathbf{R}) = f_0^{(\alpha)}(\varepsilon, \mathbf{r}) \big _{\varepsilon = \varepsilon_{\mathbf{k}\alpha}} = (2\pi)^{\alpha}$	$-3\int d\Omega_{\mathbf{k}} \frac{1}{e^{-(\varepsilon_{\mathbf{k}}-\mu(\mathbf{R}))/kT}}$	Fermi-Dirac
$\frac{\partial f_0(\varepsilon, \mathbf{R})}{\partial \varepsilon} \longrightarrow -\delta(\varepsilon - \mu(\mathbf{R})$	$ \begin{array}{c} f_0(\epsilon, \mathbf{R}) \\ \hline \partial \epsilon \end{array} \xrightarrow{kT_{\ll \mu}} -\delta \left(\epsilon - \mu(\mathbf{R}) \right) \end{array} \qquad \qquad \text{Fermi energy} $	
$g_{\mathbf{k}}(\mathbf{R})$	deformation due 1	to perturbation

Spin diffusion in bulk metal (Valet-Fert)		
<u>Ohm's Law</u>	$j_s = -\sigma \frac{\partial \mu_s(x)}{\partial x}, s = \{\uparrow, \downarrow\}$	
spin relaxation	$\frac{\partial (j_{\uparrow} - j_{\downarrow})}{\partial x} = \frac{e(n_{\uparrow} - n_{\downarrow})}{\tau_{s'}}$	
spin-flip diffusion	$\frac{\partial^{2} (\mu_{\uparrow} - \mu_{\downarrow})(\mathbf{X})}{\partial \mathbf{X}^{2}} = \frac{(\mu_{\uparrow} - \mu_{\downarrow})(\mathbf{X})}{\ell_{sd}^{2}}$	
$\ell_{sd} = \sqrt{D\tau_{sf}}$	spin diffusion length	
$D=\frac{1}{3}v_{F}^{2}\tau$	averaged diffusion constant	

