The European School on Magnetism 2015 - Practical on units

Olivier Fruchart
[March 28, 2015]

In this tutorial we derive the dimensions for physical quantities of use in magnetism, and their conversions between cgs-Gauss and SI.

1 Notations

We use the following notations:

- X is a physical quantity, such as force in $F=m g$. It may be written \mathbf{X} for vectors.
- $\operatorname{dim} X$ is the dimension of X expressed in terms of powers of fundamental dimensions, here length (L), mass (M), time (T) and electrical current (I). For example, dimensions of speed and electrical charges read: $\operatorname{dim} v=\mathrm{L} \cdot \mathrm{T}^{-1}$ and $\operatorname{dim} q=\mathrm{I} \cdot \mathrm{T}$. As a shortcut we will use here a vector matrix to summarize the dimension of quantities, with components the powers of fundamental dimensions; it will be written $[X]$ for the dimension of X. The above examples now read $[v]=[\mathrm{L}]-[\mathrm{T}]=\left[\begin{array}{lll}1 & 0 & -1\end{array} 0\right]$ and $[q]=[I]+[T]=\left[\begin{array}{lll}0 & 0 & 1\end{array} 1\right]$. We use shortcuts $[L],[M],[T]$ and $[I]$ for the four fundamental dimensions.
- In a system of units α (e.g. SI or cgs-Gauss) a physical quantity is evaluated numerically based on the unit physical quantities: $X=X_{\alpha}\langle X\rangle_{\alpha} . X_{\alpha}$ is a number, while $\langle X\rangle_{\alpha}$ is the standard (i.e., used as unit) for the physical quantity in the system considered. For example $\langle L\rangle_{\mathrm{SI}}$ is a length of one meter, while $\langle L\rangle_{\text {cgs }}$ is a length of one centimeter: $\langle L\rangle_{\text {SI }}=100\langle L\rangle_{\text {cgs }}$. For derived dimensions we use the matrix notation. For example the unit quantity for speed in system α would be written $\left[\begin{array}{llll}1 & 0 & -1 & 0\end{array}\right]_{\alpha}$.

2 Expressing dimensions

- Based on laws for mechanics, find dimensions for force F, energy \mathcal{E} and power \mathcal{P}, and their volume density E and P.
- Based on the above, find dimensions for electric field \mathbf{E}, voltage U, resistance R, resistivity ρ, permittivity ϵ_{0}.
- Find dimensions for magnetic field and magnetization \mathbf{H} and \mathbf{M}, induction \mathbf{B} and permeability μ_{0}.

3 Conversions

Physics does not depend on the choice for a system of units, so doesn't any physical quantity X. The conversions between its numerical values X_{α} and X_{β} in two such systems is readily obtained from the relationship between $\langle X\rangle_{\alpha}$ and $\langle X\rangle_{\beta}$, writing: $X=X_{\alpha}\langle X\rangle_{\alpha}=X_{\beta}\langle X\rangle_{\beta}$. Let us consider length l as a example. $l=l_{\mathrm{SI}}\langle L\rangle_{\mathrm{SI}}=l_{\mathrm{cgs}}\langle L\rangle_{\text {cgs }}$. As $\langle L\rangle_{\mathrm{SI}}=100\langle L\rangle_{\text {cgs }}$ we readily have: $l_{\mathrm{SI}}=(1 / 100) l_{\text {cgs }}$. Thus the numerical value for the length of an olympic swimming pool is 5000 in cgs, and 50 in SI. For derived units (combination of elementary units), $\langle X\rangle_{\alpha}$ is decomposed in elementary units in both systems, whose relationship is known. For example for speed: $\langle v\rangle_{\alpha}=\langle L\rangle_{\alpha}\langle T\rangle_{\alpha}^{-1}$. Notice that in the cgs-Gauss system, the unit for electric charge current may be considered as existing and named Biot or abampère, equivalent to 10 A .

Exhibit the conversion factor for these various quantities, of use for magnetism:

- Energy \mathcal{E}, energy per unit area E_{s}, energy per unit volume E. The unit for energy in the cgs-Gauss system is called erg.
- Express the conversion for magnetic induction B and magnetization M, whose units in cgs-Gauss are called Gauss and emu, respectively. Express related quantities such as magnetic flux ϕ and magnetic moment μ.
- Let us recall that magnetic field is defined in SI with $B=\mu_{0}(H+M)$, whereas in cgs-Gauss with $B=H+4 \pi M$, with the unit called Oersted. Express the conversion for μ_{0} and comment. Then express the conversion for magnetic field H.
- Discuss the cases of magnetic susceptibility $\chi=\mathrm{d} M / \mathrm{d} H$ and demagnetizing coefficients defined by $H_{\mathrm{d}}=-N M$.

