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0. Overview
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0. Overview

Literature

Soshin Chikazumi, Physics of Ferromagnetism
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Detailed and easy to understand.

Stephen J. Blundell, Magnetism in Condensed Matter,
Oxford University Press, 256 pages (2001).

Very easy to read, gives a condensed overview.

J.M.D. Coey, Magnetism and Magnetic Materials,
Cambride University Press, 628 pages (2010).

Extremely detailed and nicely illustrated book.
Also available as e-book (b/w).



  

1. Maxwell equations

The four electromagnetic fields E, D, B, and H

Symbol Name SI unit

electric field

electric displacement

magnetic flux density

magnetic field

permittivity = 8.854*10-12

Permeability = 4π*10-7

E

D

B

H

ϵ0

μ0

[V
m
]=[ N

C
]=[ kgm

s2C
]

[ C
m2 ]=[

N
Vm

]

[T ]=[Vs
m2]

[ A
m
]

[ F
m
]=[ As

Vm
]=[ C 2

N m2 ]

[ N
A2]=[

Vs
A
]

In vacuum: D=ϵ0E

H= 1
μ0
B



  

1. Maxwell equations

Maxwell equations in matter

∇ D=ρ

∇ B=0

Electrical charges are sources of D (not E)

Magnetic flux density is free of sources (not H)

Induction is caused by magnetic flux density (not H)

Currents are sources for magnetic field (not B)  

∇×E=−∂B
∂ t

∇×H=J+∂D
∂ t

In matter: 
D=ϵ0 ϵrE

H= 1
μ0μr

B

Matter acts oppositely on electrostatic and magnetostatic forces!



  

1. Maxwell equations

CGS units – a must not do



  

1. Maxwell equations

from: Coey



  

1. Maxwell equations

from: Coey

The fields in and around a magnet

B=μ0(H+M )→H= Bμ0
−M

Outside the magnet: B and H are proportional, H is the stray field of the magnet
Inside the magnet: B, H and M are not parallel, H is the demagnetizng field

Qualitatively, the demagnetizing field opposes M and B. 



  

Magnetic susceptibility

Magnetization M : density of magnetic moments

Inside matter:

Magnetic susceptibility: 

B=0 H M  ,0=4×10−7 Hm−1

M= 1
0

 B= H

χ<0: material is diamagnetic
        Diamagnetism is caused by 
        induction currents of the 
        orbiting electrons opposing
        the external field.

χ>0: material is paramagnetic
        Paramagnetism is caused by orientation of local magnetic moments along
        the external filed.

Graphite

2. Quantum mechanics of magnetic moments



  

Magnetic Susceptibility

from: Blundell

2. Quantum mechanics of magnetic moments



  

2. Quantum mechanics of magnetic moments

The magnetic moment of a bound electron

 l= I A=−e r2=−e
2m

m r2=−e
2m

ℏl=− B
l

 B=
e ℏ
2m

=9.27×10−24 J /T

Magnetic moment of ring current  (orbital moment)

Bohr magneton

Magnetic moment of spin (spin moment)

 S=−B g s

Landé factor of the electron g=2.0023≈2

Magnetic moment of nucleus is neglected as mn≫me

Attention:  The magnetic moment behaves like an angular moment.



  

The magnetic moment of an atom

N electrons are filled into orbitals

Orbital quantum number

Magnetic quantum number

g JLS=1 J  J1S S1−L L1
2J J1

Spin quantum number

Principal quantum number n=1,2,3 , .... K :n=1,L :n=2,M :n=3..

l=0,1 , ...n−1(s : l=0, p : l=1,d : l=2, f : l=3)

ml=−l ,−l1,.... , l−1, l

ms=±
1
2

z-components of l and s}

Total magnetic moment of all electrons
μ⃗=−μB∑

i=1

N

l⃗ i+g s⃗i=−g JLSμB J⃗

J=∑
i=1

N

j i , j i=l isi

2. Quantum mechanics of magnetic moments



  

Hund´s rule

Due to Pauli´s principle, a complete atomic shell has one electron for each spin and each
magnetic state.  

→ Both the total spin and orbital angular moment vanish, as well as J.
     Complete shells have no magnetic moment.

An atom with an nth incomplete shell and orbital momentum L can be in 2(2L+1) degenerate
states, if we neglect Coulomb interaction between the electrons and spin orbit interaction.

Taking into account both interactions, the states split up and a unique ground state
is established that determines the magnetic moment.

Hund´s rules describe how to fill in the electrons for weak spin-orbit interaction.   

2. Quantum mechanics of magnetic moments



  

Hund´s rule

1. Hund´s rule: Ground state has maximal S,
                         because two electrons with opposite spin are allowed to be in the
                         same orbital (magnetic state), i.e. close to each other (Pauli´s principle),
                         causing a large Coulomb repulsion.

2. Hund´s rule: Ground state has maximal L,
                         because Coulomb repulsion is smaller, if electrons orbit in the same
                         rotation sense (sign of magnetic quantum number) around the nucleus.

3. Hund´s rule: For less than half filled shells J=|L-S| and for more J=|L+S|,
                         because spin-orbit interaction is given by         , in which λ changes sign
                         from positive to negative at half filled shell.
                           

 L S

2. Quantum mechanics of magnetic moments



  

Hund´s rule

from: Blundell

Sidenote: Half filled shells have L=0 and shells with one less electron have J=0.

2. Quantum mechanics of magnetic moments



  

Hund´s rule

Example: Fe 3d6

1. Hund´s rule   m
s
 :  ½ ½ ½ ½ ½ -½ -½ -½ -½ -½

2. Hund´s rule   m
l
 :   2 1 0 -1 -2 2 1 0 -1 -2

3. Hund´s rule     J :                |L-S|      |L+S|

half
full

S=½(5-1)=2
L=0+2=2
J=|L+S|=4
µ=6µ

B

3d6=5 D6

Spectroscopic term  (2S+1)L
J

2. Quantum mechanics of magnetic moments

bcc Fe with 2 atoms per unit cell of (286 pm)3 leads to M= 12 μ
B
 / (286 pm)3 =4,75 MA/m2 

But experimental value is 1.71 MA/m2



  

Slater-Pauling curve

2. Quantum mechanics of magnetic moments



  

Problems with Hund´s rules

2. Quantum mechanics of magnetic moments

Hund's rule assumes that the spin-orbit interaction is a small correction
- works well for 3d and 4f, where we get l-s coupling, but is only an approximation
- fails for heavier elements, where we get j-j coupling
Experimental values for atoms in the gas phase slightly deviate from Hund`s rules

Hund´s rule assumes free atoms (isotropic situation)
- in a crystal, neighbouring atoms break continuos rotation symmetry, which effects L
- electrons may delocalize and form bands, which effects S
Effects are very strong for 3d but almost negligible for 4f elements.

from Coey



  

2. The crystal field and the spin-orbit interaction

The crystal field

The electric fields of neighboring atoms can perturb the centro-symmetric
potential of the free atom.

The new orbital eigenstates are thus mixtures of the free atom eigenstates.

If crystal field is not too strong, the orbital states in the presence of a crystal
field are states with a good L2 but not with a good L

z
.

More details will be given by Kuzmin



  

The orbital states in a cubic crystal field

=Y 20

=
i

2
Y 21−Y 2−1

=
1

2
−Y 21Y 2−1

=
i

2
Y 22−Y 2−2

=
1

2
Y 22Y 2−2

2. The crystal field and the spin-orbit interaction



  

Quenching of the orbital moment

While L2 is not influenced

L
z
 is quenched

< d xy | L2 |d xy >=L L1

< d xy | Lz |d xy >=1
2
<Y 22 | Lz |Y 22 ><Y 2−2 | Lz |Y 2−2 >= 1

2
2−2=0

So, if you apply a magnetic field along z, you see to first order no magnetic moment along z.
In second order perturbation theory, you see eventually an orbital moment.

Perturbation:

L=∑n

excited

−2B B x |< 0 | Lx | n >|2

En−E0

x−
2 BB y |< 0 | L y | n >|2

E n−E0

y−
2B B z |< 0 | Lz | n >|2

E n−E0

z 

 n : multi-electron wave function 

V i= B Li Bi < Li >=
 Eo

B Bi

 i
o=

− Eo

 Bi

2. The crystal field and the spin-orbit interaction



  

Quenching of the orbital moment

L=∑n

excited

−2B B x |< 0 | Lx | n >|2

En−E0

x−
2 BB y |< 0 | L y | n >|2

E n−E0

y−
2B B z |< 0 | Lz | n >|2

E n−E0

z 

A closer look:

L
z
 can only be caused by mixing of states that contain same L

z
 components

d xz , d yz and d xy , d x2− y2

L
x
 or L

y
 can only be caused by mixing of states that contain L

z
 components that differ by one

as L
x
 and L

y
 can be written as superpositions of L- and L+.

2. The crystal field and the spin-orbit interaction



  

Crystal field splitting in an octahedral crystal field

eg :

t2g :

e1=d
z

2=Y 20

e2=d x2−y2= 1

2
Y 22Y 2−2

fully quenched

t1=
1

2
d xz−id yz=Y 2−1

t 2=
1

2
−id xzd yz=Y 21

t3=d xy=
−i

2
Y 22−Y 2−2

partially quenched

2. The crystal field and the spin-orbit interaction



  

Weak octahedral crystal field

Hund´s rules hold:  S=2

L quenched.

2. The crystal field and the spin-orbit interaction



  

Strong octahedral crystal field

Hund´s rules fail:  S=1

Degenerate ground state!
L is not fully quenched.

2. The crystal field and the spin-orbit interaction



  

High-spin low-spin transitions

High spin Low spin

S=2 S=0

2. The crystal field and the spin-orbit interaction



  

Comparison between theory and experiment

2. The crystal field and the spin-orbit interaction

From Coey

Orbital moments

Fe: 0.09 μB
Co: 0.15 μB
Ni: 0.05 μB



  

The Zeeman energy and the Brillouin function

Interaction between paramagnetic moment and magnetic field in z-direction:

E Z=−μ⃗ B⃗=mJ g JLSμB B

J=1/2, L=0, S=1/2

ms=±1/2

mS=1/2

mS=−1/2

 E=ℏ=2 B B

With partition function Z, the expectation value of m
J
 can be calculated

Z= ∑
mJ=−J

+J

emJ g JLSμB B /k BT

<mJ >=−k BT
d ln Z 
d B

=g JLS  B J×BJ g JLS B J B /k BT 

4. Thermodynamics of non-interacting magnetic moments



  

The Zeeman energy and the Brillouin function

from: Kittel

B J  y =
2J1

2J
coth 2J1

2J
y− 1

2J
coth  y

2J


Curie - Weiss

4. Thermodynamics of non-interacting magnetic moments

y=
g μB J B
k BT



  

The Brillouin Function

from: Blundell

4. Thermodynamics of non-interacting magnetic moments

slope 1

slope 1/3



  

Adiabatic demagnetization

NASA: X-ray calorimeter of the
international X-ray observatory PTB: Micro-Kelvin nuclear demagnetization of Cu

4. Thermodynamics of non-interacting magnetic moments



  

Continuum model of magnetism

5. The continuum model of magnetism 

Atomic picture of individual quantum-mechanical moments is not feasible for even
moderate numbers of atoms.

Example: Already a cube of 3x3x3 Gd atoms, each with J=7/2, build a Hilbert space of
(2J+1)3*3*3=827 ≈ 2.417.851.639.229.260.000.000.000 states.

Is there a classical equation of the magnetization that captures the main aspects?

Solution: Take the limit of slow variations of the direction of magnetization
               of neighboring atoms and construct a continuous vector field of
               a classical magnetization. 

M=M (r)

Zeeman energy then turns into:  E Z=−∫M (r)Bext d r



  

Direct exchange interaction between two electrons

Quantum mechanical system with two electrons : total wave function must be antisymmetric
under exchange of the two electrons, as electrons are fermions. 

 1,2=− 2,1

Wave function of electron is a product of spatial and spin part:  1= r1× 1

For antiparallel spins (singlet):                        (↑↓ - ↓↑)                         antisymmetric

For parallel spins  (triplet)    :              = ↑↑,         (↑↓ + ↓↑), ↓↓              symmetric 1,2 1

2

 1,2= 1
2

→ Spatial part of wave function has opposite symmetry to spin part 

5. The continuum model of magnetism 



  

Direct exchange interaction between two electrons

 r1, r2=
1

2
 a r1 br2 ar2 br1

→ Coulomb repulsion is lower for antisymmetric spatial wave function and thus its energy
    Is lower than that of the symmetrical spatial wave function

 r1, r2=
1

2
 a r1 br2− ar2 br1

symmetric for singlet

antisymmetric for triplet

For the antisymmetric wave function :  r1, r2=− r2, r1

In case r
1
=r

2
 follows :  r , r =0

Exchange interaction between two spins: difference of the coulomb energy due to symmetry

E S−ET=2∫ a
* r1 b

*r2
e2

40∣r1−r2∣
 ar2 br1dr1dr2

5. The continuum model of magnetism 



  

Direct exchange between localized electrons

J=
ES−ET

2
, E ex=−2J S1

S 2

J>0 : parallel spins are favoured  (ferromagnetic coupling)

J<0: antiparallel spins are favoured (antiferromagnetic coupling)

Heisenberg model for N spins:

Nearest neighbor Heisenberg model: 

E=−∑
i,j=1

N

J ij
S i
S j

E=−∑
i,j NN

 

J S i
S j

As electrons are assumed as localized, wave functions decay quickly and mainly nearest
neighbors contribute to exchange.

5. The continuum model of magnetism 



  

Continuum description of exchange

5. The continuum model of magnetism 

Quantum mechanics: Ĥ ex=−2∑ij J ij Ŝ i Ŝ j

Continuum description: E ex=A∫(∇ m(r ))2 d r=A∫[(∇mx)
2+(∇m y)

2+(∇m z)
2]d r



  

Easy and hard magnetic directions

Along easy axis of magnetization the sample can be saturated with small fields. 
Along the hard axis higher fields are necessary.

E A=K 1mx
2 m y

2m y
2 mz

2mz
2 mx

2K 2m x
2 m y

2 mz
2K 3mx

2 m y
2m y

2 m z
2mz

2 mx
22.....Cubic crystal:

Hexagonal crystal: E A=K 1sin 2K 2 sin 4K 3 cos6sin 6....

K 1=5.48×104 J /M 2
K 1=−1.26×104 J /m2 K 1=7.66×105 J /m2

104 J /m2≈1 eV /atom

5. The continuum model of magnetism 



  

The basics of micromagnetism

In micromagnetism, the magnetic moments of a ferromagnet are approximated by a 
continuous vector field of variable direction but constant length.
A stable magnetic state is a local minimum of the energy functional of this vector field. 

M r =∣M∣mr 

Zeeman energy density :

Exchange energy  density :

Anisotropy energy density :

Dipolar energy density :

Total energy :

E Z r =−0 M H ext m r 

Eex r =A ∇ m r 2

E Ar = f  m r 

ED r =∫
V

0 M
2

mr  ∇ ´  m r ´ r ´−r 
4∣r−r ´∣3

d r ´

E=∫
V
E Z r E ex r E Ar ED r d r

5. The continuum model of magnetism 



  

The basics of micromagnetism

If we neglect the non local dipolar energy, the energy density is given by local properties.
To minimize the exchange energy, the vector field homogeneously points in one direction.
The direction is chosen to minimize the Zeeman and anisotropy energy.
The magnet is in the single domain state.   

Basically all complexity of the magnetic structures of magnets is caused by the complex
dipolar energy.

H D( r⃗ )=−M∫
V

∇⃗ ´ (m⃗( r⃗ ´ )( r⃗ ´− r⃗ ))
4π∣⃗r− r⃗ ∣́3

d r⃗ ´=−∫
V

ρ( r⃗ ´ )( r⃗ ´− r⃗ )
4π∣⃗r− r⃗ ´∣3

d r⃗ ´+∫
S

σ( r⃗ ´ )( r⃗ ´− r⃗ )
4π∣⃗r− r⃗ ´∣3

d r⃗ ´

where ρ is the magnetic volume charge density
and σ is the magnetic surface charge density

r =−M ∇ mr 
 r =M m r n r 

5. The continuum model of magnetism 



  

The basics of micromagnetism

In case the dipolar energy is the dominant energy, the ground state configuration will
avoid both volume and surface magnetic charges.

Volume charges are created e.g. by head-to-head or tail-to-tail configurations.

Surface charges can be avoided, if magnetization is always tangential to edge of sample.

Dipolar energy depends on shape of sample → shape anisotropy

5. The continuum model of magnetism 
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