Imperial College London

Lecture 3: Magnetocaloric materials

Karl G. Sandeman ESM 2013

Imperial College London

Overview of Lecture 3

- 1. Examples of tricritical materials
- 2. What are the limits of magnetocaloric performance?
- 3. An introduction to several room temperature magnetocaloric materials
- 4. Some words on measurement
- 5. An example of material-device integration: the SSEEC project
- 6. Where else to look for caloric effects?
- 7. Conclusion

Imperial College

Real tricritical material #2, continued: La-Fe-Si

A candidate magnetic refrigerant at room temperature: La(Fe,Si)13

Imperial College London

Strategies for coupling magnetism to the lattice

- 1) Don't bother! (Gadolinium, second order phase transitions)
- 2) Push a second order magnetic transition towards a bi/tricritical point ($b \rightarrow 0^+$)
- 3) Push a first order transition towards a bi/tricritical point ($b \rightarrow 0^{-}$)

In (2) or (3) we can either:

- Use a magneto-elastic transition (no change of crystal symmetry)
 La(Fe,Si)₁₃, (Mn,Fe)₂P, FeRh, CoMnSi, Mn₃GaC
- Use a magneto-structural transition (change in crystal symmetry)
 - Shape memory alloys, Gd₅Ge₄, CoMnGe

Katter et al., private communication

Barcza et al., IEEE Trans. Magn. (2011)

J.S. Kouvel, J. Appl. Phys. (1966)

Imperial College London

Shape memory alloys: tuning hysteresis

K. Kreiner et al., JMMM (1998)

Imperial College

London

Methods of measurement

Direct

- adiabatic temperature change, ΔT_{ad}
- field-induced latent heat measurement (the first order part of ΔS)

Indirect

- magnetisation vs. temperature and field -> estimated isothermal entropy change

- heat capacity, integrated -> isothermal entropy change and/or adiabatic temperature change

Imperial College

• T_ 1%

causes the sharp change in heat

behaviour observed in the pellet.

capacity to instead resemble broad

Averaged data

T (K)

London

200

C (Jkg⁻¹K¹) 0 000 000

500

Back to materials...

Plates of La-Fe-Si material, made by Vacuumschmelze (Germany)

JAN

 Strainferitivel charges in sample volume Large at, e.g. martensitic phase changes Hysteresis requires care! Barocalorics Similar, but 3D hydrostatic pressure applied MCE materials often yield a "BCE" e.g. 0.06 K/MPa in FeRh Electric field, applied to bulk or to thin film FE/AFE materials 	Elastocalorics	[°] [°]
 Barocalorics Similar, but 3D hydrostatic pressure applied MCE materials often yield a "BCE" e.g. 0.06 K/MPa in FeRh Electrocalorics Electric field, applied to bulk or to thin film FE/AFE materials 	Strain-unven changes in sample volume Large at, e.g. martensitic phase changes Hysteresis requires care!	50
 Electrocalorics Electric field, applied to bulk or to thin film FE/AFE materials Cui et al., APL (2012) 	 Barocalorics Similar, but 3D hydrostatic pressure applied MCE materials often yield a "BCE" e.g. 0.06 K/MPa in FeRh 	20 10 10 10 10 10 10 10 10 10 1
	Electrocalorics Electric field, applied to bulk or to thin film FE/AFE materials	Cui et al., APL (2012)

Where else to look for large changes of entropy?

Elastocalorics

- · Strain-driven changes in sample volume
- Large at, e.g. martensitic phase changes
- Hysteresis requires care!

Barocalorics

- Similar, but 3D hydrostatic pressure applied
- MCE materials often yield a "BCE" e.g. 0.06 K/MPa in FeRh

Electrocalorics

· Electric field, applied to bulk or to thin film FE/AFE materials

Imperial College London		The Leverhulme Trest	
Conclusions	EPSRC Engineering and Physical Sciences Research Council	The Newton Trust	
There's lots of interesting physics, chemistry and materials science in magnetocaloric (MCE) materials!			
Structural and calorimetric characterisation is key and can shed light on what triggers the onset of (tri)criticality			
[Theoretical modelling can help to predict new materials – not shown here			
See, e.g. Z. Gercsi et al., Phys. Rev. B 83 174403 (2011)]			
Building a magnetic fridge is an inter-disciplinary challenge that continues to provide challenges in physics, materials science, metallurgy, mechanical engineering, corrosion and other areas.			

Fig. 3. Temperature dependence of the elastocaloric effect for $Pe_{n}Rh_{21}$ alloy under various tensile screases (+) 36, (\Box) 151, (+) 238, (\bigcirc) 336, (+) 433, (+) 529 MN/m². Nikitin et al., Phys. Lett. A (1992)

Where else to look for large changes of entropy?

Elastocalorics

- Strain-driven changes in sample volume
- · Large at, e.g. martensitic phase changes
- Hysteresis requires care!

Barocalorics

- · Similar, but 3D hydrostatic pressure applied
- MCE materials often yield a "BCE" e.g. 0.06 K/MPa in FeRh

Electrocalorics

· Electric field, applied to bulk or to thin film FE/AFE materials

310 320 330 340 350 Annaorazov, J. Alloys Comp. (2003) $dG = -SdT + \sum_{i} X_{i} dY_{i}$ $= -SdT - MdH + Vdp - \varepsilon d\sigma + PdE...$ Barocaloric Electrocaloric Electrocaloric

Animated plots (not preserved in pdf)

FeRh

D=tan a

 $\Delta T_s = D(P - P_c^{\dagger})$

340 350

 $\Delta T_{S,max} = D(P_{\ell}^{\dagger} - P_{c}^{\dagger})$

0.81 Ę″12 0.2 0.6 1.0

0.6

0.2

P, GPa

P, GPa