Imperial College London

Thermodynamics and phase transitions in magnetic materials

Lecture 2

Karl G. Sandeman ESM 2013

Imperial College London

Critical exponents: experiment vs theory for d=3

Transition type	Material	α	β	γ	ν
		$C \sim t ^{-\alpha}$	$\langle m angle \sim t ^{eta}$	$\chi \sim t ^{-\gamma}$	$ \xi \sim t ^{-\nu}$
Ferromag. $(n = 3)$	Fe, Ni	-0.1	0.34	1.4	0.7
Superfluid $(n = 2)$	He^{4}	0	0.3	1.3	0.7
Liquid-gas $(n = 1)$	CO_2 , Xe	0.11	0.32	1.24	0.63
Superconductors		0	1/2	1	1/2
Mean-field		0	1/2	1	1/2

Here "t" is proportional to $T-T_c$

Table from Ben Simons' lectures on Phase Transitions and Collective Phenomena, U. Cambridge.

Imperial College London

Outline of Lecture 2

- More on the theory of tricritical transitions (see blackboard)
- · An introduction to magnetic cooling (to be continued in Lecture 3)

Imperia Londor	l College າ								
More	More comparisons								
		Ising	Х-Ү	Heisenberg					
	d=1	No ordering!	No ordering!	No ordering!					
	d=2	β=1/8; γ=7/4	Special case!	No ordering!					
	d=3	β=0.32; γ=1	β=0.35; γ=1	β=0.36; γ=1.39					
	Mean field		β=1/2; γ=1						

Imperial College London

Magnetic cooling: the future

Camfridge

A careful system-wide cost and efficiency analysis revealed the benefit of magnetic cooling at low powers (< 500 Watt).

	Thermodynamic Ideal	Current Solution (Butane)	Magnetic A+++ Solution (no vacuum panels)
Target Cooling Power (W)	30	30	30
External Temperature (°C)	25	40	35
Internal Temperature (°C)	5	-15	0
Cooling Engine Power (W)	30	150	30
Technology Efficiency (%)	100%	43%	50%
Running Time (%)	100%	20%	100%
Carnot COP	14	2	4
Relative Efficiency	100%	14%	28%
Energy Consumption (W)	2.2	15	7.5

The sign of (dM/dT) is crucial and yields two possibilities for the MCE

Magnetic entropy change as a function of temperature of: $La(Fe_{0.315}Co,St_{0.028})_{1.3}$ (left) and five $LaFe_{11,24}$,Mn,Si, $_{28}H_{1.33}$ alloys with different y (right) for a magnetic field change of 1.6 T. The entropy change is higher than that seen in gadolinium (Gd, left plot only).

