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Outline of Lecture 2

The'modvnamics and nnasa . z\/loreblon lzze t:sory of tricritical transitions
- - - - see blackboar
transitions in magnetic materials

» An introduction to magnetic cooling
(to be continued in Lecture 3)
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Critical exponents: experiment vs theory for 73 More comparisons
Transition type Material || o B8 v v
O~ [t | fm) ~ [t | x~ [t | €~ [t
. d=1 No ordering!  No ordering! No ordering!
Ferromag. (n = 3) | Fe, Ni —0.1 0.34 1.4 0.7
Superfluid (n = 2) || He? 0 0.3 1.3 0.7 ) X
d=2 =1/8; y=7/4 S | No ord !
Liquid-gas (n = 1) | CO,, Xe | 0.1 0.32 1.24 0.63 Py Specia o orerng
Superconductors 0 1/2 1 1/2 s 6=032:y=1 B=0.35 y=1 B=0.36;y=139
Mean-field 0 1/2 1 1/2 )
Mean field B=1/2; y=1
Here “t" is proportional to T-T,
Table from Ben Simons’ lectures on Phase Transitions and Collective Phenomena, U. Cambridge.
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A phase diagram of the Ginzhurg-landau Hamiitonian
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This diagram is from Ben Simons’ lectures on Phase Transitions and Collective Phenomena, U. Cambridge.
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imaging tricriticality using a Hall probe

CoMnSi; 4,Geg s Antiferromagnet to high-magnetisation state, induced by field
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Morrison et al., Phys. Rev. B (2009)
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Pressure bar (a)
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co, 31°C |7.38 MPa
R22 96.2 °C | 4.99 MPa
_ ) R134a 101 °C |4.06 MPa
Evaporating Condensing
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Temperature °C
The efficiency of the refrigerant is
directly related to the critical

Gas compression refrigeration temperature.

works in sub-critical regime

Tuning the critical point and the
pressure-temperature phase line
gradient are very important
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Solid-state cooling at room temperature

Ferroic cooling,
including magnetic
cooling
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Magnetic cooling: the future

Camfridge
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'ALL FRIDGES COULD BE "MAGNETIC" BY 2020
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Caloric Effects in Ferroic Materials: New
Concepts for Cooling

DFG Priority Programme 1599
Project
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A careful system-wide cost and efficiency analysis revealed the benefit of
magnetic cooling at low powers (< 500 Watt).

Current | Magnetic A+++
Thermodynamic| Solution | Solution (no
Ideal (Butane) | vacuum panels)
Target Cooling Power (W) 30 30 30
External Temperature (°C) 25 40 35
Internal Temperature (°C) 5 -15 0
Cooling Engine Power (W) 30 150 30
Technology Efficiency (%) 100% 43% 50%
Running Time (%) 100% 20% 100%
Carnot COP 14 2 4
Relative Efficiency 100% 14% 28%
Energy Consumption (W) 2.2 15 7.5

Imperlal College

London

Imperial College
London

Magnetocaloric principles

Rare earth
metal use

Magnetic

Magnetic phase
transition physics
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Can also be described in terms of
isothermal entropy change, AS:

AS, (HD) = [

dH'

w

(aM(T' JH' ))

Maxwell relation for continuous M(T,H)

AS,a(HT) =

dH,
dr

Clausius-Clapeyron eqn. for 1st order
transition in M

So the material (usually) heats in an applied field (AT,4>0)
The effect is maximal at a (magnetic) phase transition

The sign of (dM/dT) is crucial and yields two possibilities for the MCE
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Magnetocaloric henchmark material at RT: Gd

Adiabatic Magnetocaloric Effectin Gd (0-2T)
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K-type thermocouple

Imperial College
Lonc ‘ on

The cycle

Vapour cycle

Pressurise l
Y

heat

Expansion valve

Magnetic cooling cycle
l using conventional magnetic
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Expelled
heat

Mmagnellse ﬁ ;

K. G. Sandeman, Mag. Tech. Int. 1 30-32 (2011)
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State of the art (2010)

INTERNATIONAL JOURNAL OF REFRIGERATION 33 (2010) 10291060

ELSEVIER frur

available at www.sciencedirect.com

“ScienceDirect

refrigeration

Review

A review of magnetic refrigerator and heat pump prototypes

built before the year 2010

Bingfeng Yu®*, Min Liu®, Peter W. Egolf?, Andrej Kitanovski®

=School of Energy and Power Enginering, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an 710049, China
®University of Applied Sciences of Western Switzerland, Institute of Thermal Sciences, CH-1401 Yverdon-les-Bains, Switzerland

Lists 41 prototypes to 2010.

Most used Gd as refrigerant at that time.

No clear example of end-user integration at that time.
The situation has already changed in the 3 years since...
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Magnetocaloric principles

Conventional MCE

Inverse MCE
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What makes a good magnetic refrigerant?

Cheap MnFe(P,Z)
d-metal magnetism La(Fe,Co,Mn,Si),5

First order transition TAS
because AT, of second order AT (H,T)=——-
transtion is too low (if d-metal ad

alloy) p

Proximity to (tri)critical point
Minimise energy loss from
hysteresis

1%t order
OH of phase line is also

. important (see next)
aT Tc T
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Single phase refrigerants

A candidate magnetic refrigerant at room temperature: La(Fe,Si);5
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La(Fe,Si),5 cubic crystal structure
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Tuning transition temperature

VACUUMSCHMELZE

La-Fe-Co-Si La-Fe-Mn-Si-H
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Magnetic entropy change as a function of of: La(Fep015C0,Sio as)1a (left) and five LaFey 74,Mn,Si 26H; 5

alloys with different y (right) for a magnetic field change of 1.6 T. The entropy change is higher than that seen in
gadolinium (Gd, left plot only).




