Imperial College London

Thermodynamics and phase transitions in magnetic materials

Lecture 1

Karl G. Sandeman ESM 2013

Imperial College

Why am I interested in magnetic phase transitions?

- · Fundamental to our understanding of magnetic order
- The most sensitive parameter (arguably) in a magnetic material - a good barometer of disorder, etc.
- · Potential uses
 - Magnetic cooling
 - · Power generation from waste heat
 - Magnetic shape memory
 - Self-controlled magnetic hyperthermia

Imperial College London

Overview of Lecture 1

This lecture is an introduction to the physics of phase transitions, including some of the most relevant terminology.

Much of the content will be written on the blackboard.

Imperial College

A brief history of the Curie point: Gilbert's *de Magnete*

Gilbert (1544-1603) observed that iron could acquire magnetic properties as a result of being heat-worked by a blacksmith:

"For as when a babe is brought forth into the light from its mother's womb, and acquires respiration and certain animal activities.... so that piece of iron ... while it is returning also from its heated condition to its former temperature, it is imbued with a certain verticity in accord with its position."

The observation of a critical temperature for ferromagnetism - later called a Curie temperature Imperial College

Critical exponents: experiment vs theory for *d*=3

Transition type	Material	α	β	γ	ν
			1 1 1 1 1	1.1.0	5 1.1 V
		$C \sim t ^{-\alpha}$	$\langle m \rangle \sim t ^{\beta}$	$\chi \sim t ^{-\gamma}$	$ \xi \sim t ^{-\nu}$
E	E-NI	0.1	0.24	1.4	0.7
Ferromag. $(n = 3)$	re, M	-0.1	0.34	1.4	0.7
Superfluid $(n = 2)$	He ⁴	0	0.3	1.3	0.7
Liquid-gas $(n = 1)$	CO_2 , Xe	0.11	0.32	1.24	0.63
Superconductors		0	1/2	1	1/2
Mean-field		0	1/2	1	1/2

Here "t" is proportional to $T-T_c$

Table from Ben Simons' lectures on Phase Transitions and Collective Phenomena, U. Cambridge.

Imperial College London						
A phase diagram of the Ginzburg-Landau Hamiltonian						
No ordered Phase	Fluctuations Destroy Mean-Field Behaviour But Not Order	Saddle-Point Exponents Valid	_			
2		4	d			
Lower CriticalUpper CriticalDimensionDimension						
This diagram is from Ben Simons' lectures on Phase Transitions and Collective Phenomena, U. Cambridge.						