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I. FRAMEWORK OF MICROMAGNETISM

Most of micromagnetic modeling relies on two hypotheses:

– The spatial variation of any physical quantity (magnetic moments etc.) is slow at the length
scale of inter-atomic distances. This allows one to describe physical systems in a continuous
medium approach and make use of the power of integral theory and differential equations.

– The resulting magnetization vector field (i.e. the density of magnetic moments per unit vo-
lume) has a uniform and constant magnitude : |M(r)| ≡Ms, the spontaneous magnetization.

A major purpose of micromagnetism is to exhibit stable (or metastable) magnetization arran-
gements under static conditions. This minimizes globally (resp. locally) the total energy of the
system.

In most situations the density of energy comprises at most four terms : magnetic anisotropy Ea =
Kfa(θ,ϕ), Zeeman energy EZ = −µ0M.H, self-dipolar energy Ed = − 1

2µ0M.Hd and exchange
energy, which continuous form we propose to link with microscopic quantities in this paragraph.

Let us consider exchange energy in a Heisenberg model : E = − 1
2

∑
<i,j> JSi.Sj , where the

summation concerns near(est) neighbors pairs < i,j >. J > 0 for ferromagnets.
In the simple framework of a one-dimensional crystal with atomic spacing a, the energy reads

E = −
∑
i

JSi.Si+1 (1)

= −
∑
i

JS(ia).S((i+ 1)a)

If S(x) varies slowly on the scale of a, S((i + 1)a) ≈ S(ia) + a∂xS(ia) + 1
2a

2∂2
xS(ia). This

expression can also be expressed in term of θ(x) the angle between S(x) and the x axis:

S(x) = [cos θ(x), sin θ(x)]

∂xS(x) = [−∂xθ(x) sin θ(x),∂xθ(x) cos θ(x)]

∂2
xS(x) = [−∂2

xθ(x) sin θ(x)− (∂xθ(x))2 cos θ(x),∂2
xθ cos θ(x)− (∂xθ)

2 sin θ(x)]

Then,

E =
∑
i

Ja2

2
[∂xθ(ia)]2

≈
∫
Ja

2
[∂xθ(x)]2dx

The exchange energy density is then

Eex = A(∂xθ)
2 (2)

with A = Ja/2 the exchange constant.
In a three-dimensional body this energy is generalized to the expression :

Eex = A(∇m)2 (3)

where (∇m)2 is a shortcut for
∑
i

∑
j(∂xjmi)

2. The exchange constant is A ∝ J in 2d and A ∝ J/a
in 3d, the proportionality constant depending on the type of atomic lattice.
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II. EULER-LAGRANGE EQUATION

We will seek to exhibit a magnetization configuration that minimizes the energy density inte-
grated over the entire system : E =

∫
E(r)dr. The problem of finding the minimum of a continuous

quantity integrated over space is a common problem solved through Euler-Lagrange equation,
which we will deal with in a textbook one-dimensional framework here.

Let us consider a microscopic quantity defined as F (θ; dxθ), where x is the spatial coordinate
and θ a quantity defined at each point. In the case of micromagnetism F is in general the energy:

F (θ; dxθ) = A(∂xθ)
2 + f(θ)

We define the integrated quantity

F =

∫ B

A

F (θ; dxθ)dx+ EA(θ) + EB(θ)

where A and B are the boundaries and EA(θ) and EB(θ) are surface energy terms.
Let us consider a solution θ which minimizes F and an infinitesimal function variation δθ(x) of

θ.

F(θ + δθ) =

∫ B

A

F (θ + δθ; dx(θ + δθ))dx+ EA(θ + δθ) + EB(θ + δθ)

≈
∫ B

A

dx

{
F (θ; dxθ) + δθ

∂F

∂θ
(θ; dxθ) + dxδθ

∂F

∂dxθ
(θ; dxθ)

}
+

EA(θ) + EB(θ) + δθ

{
∂EA
∂θ

(δθ) +
∂EB
∂θ

(δθ)

}
If θ is a solution then ∆F = F(θ + δθ)−F(θ) = 0:

∆F =

∫ B

A

dx

{
δθ
∂F

∂θ
(θ; dxθ) + dxδθ

∂F

∂dxθ
(θ; dxθ)

}
+ δθ

{
∂EA
∂θ

(δθ) +
∂EB
∂θ

(δθ)

}
The second term in the integral can be simplified using a partial integration:∫ B

A

dx dxδθ
∂F

∂dxθ
(θ; dxθ) =

∣∣∣∣δθ ∂F

∂dxθ
(θ; dxθ)

∣∣∣∣A
B

−
∫ B

A

dx δθ
∂2F

∂x∂dxθ
(θ; dxθ)

We the obtain the Euler-Lagrange equation :

∂θF − ∂x(∂∂xθF ) = 0 (4)

∂θEA − ∂∂xθF |A = 0 (5)

∂θEB + ∂∂xθF |B = 0 (6)

Notice that equations Eq. 5 and Eq. 6 differ in sign because a surface quantity should be defined
with respect to the unit vector normal to the surface, with a unique convention for the sense,
such as the outwards normal. Here the abscissa x is outwards at point B however inwards at A.
An alternative microscopic explanation would be that for a given sign of dxθ the exchange torque
exerted on a moment to the right (at point B) is opposite to that exerted to the left (at point A),
whereas the torque exerted by a surface anisotropy energy solely depends on θ.

III. BLOCH DOMAIN WALL

We consider a infinite 1d system, with exchange A and a magnetic anisotropy of the simplest
form (uniaxial and second order) : Ea(θ) = K sin2 θ. Let us apply the exquation 4-6 to this system.
We consider free boundary condition so that EA = EB = 0. The Euler-Lagrange equation becomes:

2A∂2
xθ = 2K sin θ cos θ (7)

2A∂xθ|+∞ = 0 (8)

2A∂xθ|−∞ = 0 (9)
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Fig. 1 – Variation of the out of plane angle of the magnetization θ and the out of plane magnetization
component mz for a Bloch domain wall. The red thin lines represent the asymptotes approximation.

The two last equations mean that the derivative at + or −∞ are zero, so that θ(x) cannot
diverge.

There are 4 trivial solutions: θ(x) = 0, π/2, π, and 3π/2, which are uniform. However, they
are not all stable, 0 and π being stable (the anisotropy energy density is zero), and π/2 and 3π/2
being unstable (the anisotropy energy density is K). We now look for a non uniform solution,
which forms a domain wall, i.e. where θ(−∞) = 0 and θ(+∞) = π.

Let us multiply equation 7 by ∂xθ (different from zero for a non uniform solution) and integrate:

2A∂xθ∂
2
xθ = 2K∂xθ sin θ cos θ

A(∂xθ)
2 = K sin2 θ

We obtain :

dθ

sin θ
= ±dx

δB
(10)

with δB =
√
A/K.

We use the variable t = tan θ/2 and remark that sin θ = 2t/(1+t2) and dt = 1
2dθ(1+tan2(θ/2)) =

1
2dθ(1 + t2). Equation 10 becomes:

dt

t
= ±dx

δB

which has the simple solution

x

δB
= ± ln(t) +

x0

δB

or θ = 2 arctan

[
exp

(
±x− x0

δB

)]
(11)

or equivalently, for mz
1:

mz(x) = ± tanh(x/δB) (12)

This solution corresponds to a domain wall at x0. Given the signe + or − the magnetization
turns from θ = 0 to π (+ sign) or from π to 0. All these solutions are equivalent. The Bloch wall
parameter δB is proportionnal to the domain wall width. It corresponds to one of the characteristic
length in micromagnetism, which compares the magnetic anisotropy strength with the exchange
energy. It is easily seen that higher anisotropy energy favors narrower domain walls.
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Let us now calculate the energy of the domain wall. It corresponds to the difference between the
energy in the presence and in the abscence of a domain wall. This last energy being 0 we have :

σ =

∫
dx
[
A(∂xθ)

2 +K sin2 θ
]

with θ being given by eq. 11

sin[θ(x)] =
1

cosh(x/δB)

∂xθ =
1

δB cosh(x/δB)

σ =

∫
dx

δ2
B

[
A

cosh2(x/δB)
+

Kδ2
B

cosh2(x/δB)

]
= 2KδB

∫
du

[
1

cosh2(u)

]
with u = x/δB

σ = 4
√
AK (13)

IV. AN EXAMPLE OF PINNING

Starting from a homogeneous material let us model a local defect in the form of a magnetically-
soft (i.e. zero anisotropy) insertion of width δl, located at position x. In the case where δ` � δB
we consider that the domain wall profile is not deformed as compared to the defect free problem.
The energy of the system is then

E = 2
√
AK

[∫ x
δB
− δ`

2δB

−∞

1

cosh2 u
+

∫ +∞

x
δB

+ δ`
2δB

1

cosh2 u

]

= 4
√
AK

[
1 +

1

2
tanh

(
x

δB
− δ`

2δB

)
− 1

2
tanh

(
x

δB
+

δ`

2δB

)]
≈ 4
√
AK

[
1− δ`

4δB

1

cosh2(x/δB)

]
≈ σ

[
1− δ`

4δB

1

cosh2(x/δB)

]
When a magnetic field is applied, the Zeeman energy varies when the domain wall moves so that

Zeeman energy is proportionnal to the domain wall position:

EZ = −2xµ0MSH cosα. (14)

The minus sign is just conventionnal and tells that a positive field tends to push the domain wall
toward positive x (the opposite convention can also be choosen). The 2 tells that when the domain
wall moves, the local magnetization endergoes a π angle rotation. Note that, implicitly, we have
neglected the magnetization rotation induced by the field angle outside of the domain wall, which is
only valid for low field. When the magnetic field is applied, the potential is tilted and the depinning
field is reached when the slope is always negative.

The slope is given by :

dE
dx

=
σδ`

2δ2
B

sinh(x/δB)

cosh3(x/δB)
− 2µ0MSH cosα (15)

The maximum slope is obtained at the inflexion point, for which ∂2E = 0:

d2E
dx2

=
σδ`

2δ3
B

cosh2(x/δB)− 3 sinh2(x/δB)

cosh4(x/δB)
(16)
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Fig. 2 – Variation of the domain wall energy as a function of its position when the defect is in x = 0 and
for different value of the magnetic field.

We deduce that at the inflexion point,

sinh(x/δB) = 1/
√

2

cosh(x/δB) =
√

3/2

(17)

At the depinning field, the slope of the potiential should change sign at the inflexion point. Hp

is thus determined as

dE
dx

∣∣∣∣
infl.point.

=
σδ`

2δ2
B

sinh(x/δB)

cosh3(x/δB)
− 2µ0MSHp cosα = 0

So that

Hp =
σδ`

2δ2
Bµ0MS cosα

1

3
√

3

=
HK

cosα

δ`

δB

1

3
√

3
(18)

with HK = 2K/µ0MS = σ/(2δBµ0MS).
Notice :

– The model of the Bloch wall was named after D. Bloch who published this model in 19322.

– The 1/ cosα dependence of coercivity comes from the weak field hypothesis (Hp � HK),
which occurs for low pinning. It is known as the Kondorski model3.

– This model had been initially published in 1939 by Becker and Döring4, and is summarized
in the nice book of Skomsky Simple models of Magnetism5.

– While coercivity requires a high anisotropy, the latter is not a suficient condition to have a
high coercivity. To achieve this one must prevent magnetization reversal that can be initiated
on defects (structural or geometric) and switch the entire magnetization by propagation of a
domain wall. In a short-hand classification one distinguishes coercivity made possible by hin-
dering nucleation, or hindering the propagation of domain walls. In reality both phenomena
are often intermixed. Here we modeled an example of pinning.
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– Simple micromagnetic models of nucleation on defects6 were the first to be exhibited to
tentatively explain the so-called Brown paradox, i.e. the fact that values of experimental
values of coercivity in most samples are smaller or much smaller than the values predicted
by the ideal model of coherent rotation7.

V. MAGNETIC VORTEX IN A NANODOT

This last exemple intend to present an other emblematic problem of micromangetism, the ma-
gnetic vortex. It is particularly interesting to introduce the exchange length Λ, which is another
characteristic length of micromagnetism.

We consider a magnetic nanodisk made of a soft magnetic material (ie. magnetocrystalline
anisotropy is neglected). In order to minimize the dipolar energy, the magnetization tends to close
the magnetic flux and form a vortex state: the magnetization then turns around the disk center.
This effect will occur for nanodisk with diamter larger than several exchange length8.

In this problem, we present a shematic calculation of the vortex configuration, in the case of
ultrathin nanodisk (thiner than the exchange length), for which the magnetization is uniform accros
the dot thickness.

A. 2D problem

We first consider that the magnetization lies in the disk plane. Indeed, this avoids the creation of
magnetic charges on the top and bottom faces of the disk, which would result in a dipolar energy
cost. In polar (r,ϕ) coordinates, the magnetization writes:

m = [− sin(ϕ); cos(ϕ); 0] . (19)

This solution ensures div(m) = 0 and m.n = 0 (no surface charges). This means that the dipolar
energy is perfectly satified and the energy cost is zero. Only the exchange energy remains:

Eex = A(∇m)2

= (∂xmx)
2

+ (∂ymx)
2

+ (∂xmy)
2

+ (∂ymy)
2

= A/r2. (20)

Obviously, the exchange energy diverges at the disk center, which is not possible in reality. The
problem comes from the hypothesis that the magnetization is forced to lie in the disk plane.

B. 3D problem

To avoid the divergence of the exchange energy at the disk center, we let the possibility for the
magnetization is explore the direction perpendicular to the disk plane. Using θ(r), the angle of
the magnetization with the disk normal, and keeping the cirular geometry, the magnetization now
writes

m(r,ϕ) = [− sin(ϕ) sin(θ); cos(ϕ) sin(θ); cos(θ)] . (21)

The exchange energy is then

Eex = A(∇m)2

= A

[
sin2 θ

r2
+

(
dθ

dr

)2
]

(22)

Obviously, in order to avoid the exchange energy divergence, θ(r = 0) = 0, which means that
the magnetization is perpendicular to the disk plane at the disk center. This corresponds to the
vortex core. The purpose of the following is to estimate the width of this vortex core.



7

However, the condition m.n is no longer satisfied and thus, the mz component results in magnetic
charges on the surfaces of the disk. This results in a dipolar energy cost :

Edip =
1

2
µ0M

2
S cos(θ) (23)

The overall energy density reads:

E = 2πt

∫ R

0

dr r

[
A

(
dθ

dr

)2

+A
sin2 θ

r2
+
µ0M

2
s

2
cos2 θ

]
(24)

This problem is then equivalent to a 1d problem with r ∈ [0;R] as it has been treated before. We
apply the Euler-Lagrange equations (beware not that the term inside the integral is not only the
local energy as in the case of the Bloch wall, but that a r multiplier has to be taken into account
due to the circular geometry):(

1

r2
− 1

Λ2

)
sin 2θ =

1

r

d(2θ)

dr
+
∂2(2θ)

∂r2
(25)

2Ar
dθ

dr

∣∣∣∣
r=0

= 0 (26)

2Ar
dθ

dr

∣∣∣∣
r=R

= 0 (27)

with Λ =
√

2A/µ0M2
s the so-called exchange length. This length is the other characterisitc length

in micromagnetism. It compares the dipolar energy strength to the exchange energy. Below this
length, exchange energy dominates and dipolar effect can be neglected.

Equation 26 is always satisfied what ever θ(r). Equation 27 means that ∂rθ|R = 0.
Unfortunately, no analytical solution can be found to equation 25, which has to be solved numeri-

cally. For this purpose, we use the ”shooting method”: starting with r = 0 and θ(r = 0) = 0, we need
to know ∂rθ(r = 0) (”shooting angle”). We integrate equation 25, with various values for ∂rθ(r = 0)
(using for example Runge Kutta method) and only conserve the solution if ∂rθ(r = R) = 0. The
solution is not unique and a large range of solution can satisfy equation 27. To discriminate between
them, the energy (equation 24) is calculated. The solution is shown in fig. 3.

Finaly, the vortex core width is found to be of the order of Λ (taking the width at half amplitude
of the peak for mz, we obtain 2.2Λ).

This model has first been presented by Feldkeller and Thomas9. Although it is not anlytical up
to the end, its importance relies in the introduction of the exchange length.

1 using the half angle formula:
t = tan(A/2)
sinA = 2t/(1 + t2), cosA = (1 − t2)/(1 + t2)

2 F. Bloch, Z. Phys. 74, 295 (1932).
3 E. Kondorski, On the nature of coercive force and irreversible changes in magnetisation, Phys. Z. Sow-

jetunion 11, 597 (1937).
4 R. Becker, W. Döring, Ferromagnetismus, Springer, 1939.
5 R. Skomski, Nanomagnetics, J. Phys.:Condens. Matter 15, R841 (2003).
6 A. Aharoni, Reduction in Coercive Force Caused by a Certain Type of Imperfection, Phys. Rev. 119,

127 (1960).
7 E. C. Stoner, E. P. Wohlfarth, A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys, Phil. Trans.

Roy. Soc. Lond. A 240, 599 (1948).
8 R. P. Cowburn et al., Phys. Rev. Lett. 83, 1042 (1999)
9 E. Feldkeller and H. Thomas, Phys. Kondens Materie 4, 8 (1965)
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Fig. 3 – Variation of the out of plane angle of the magnetization θ along the radius of the nanodot.
Inset: variation of the mz = cos θ. The result has been obtained by integrating eq. 25 with R = 10Λ and
dθ/du(u = 0) = 4.02.


