Out of plane precession modes for a perpendicular polarizer

Objective: As an illustration of some general properties and solutions of the Landau-
Lifshitz-Gilbert equation including the spin transfer torque term, we derive here the
out-of-plane precession (OPP) trajectories and calculate the corresponding
frequencies for spin torque driven excitations under perpendicular spin polarization.
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Practical on Large Angle Precessional Magnetization Dynamics

Step 1 The equation of motion under spin transfer torque is given by the Landau-Lifshitz Gilbert
(LLG) equation augmented by a spin transfer torque, called here LLGS

dM a dM Iy h J
—=— M LM x(M xP a=——— = i
dt M xH g4 + M X ot + M X( X ) 17 56 Mstn J=current density

S S

Q1 By multiplying LLGS vectorially by (M x) convert LLGS into the Landau-Lifshitz form (with

spintorque) where the damping term is written as
P que) Ping —%Mx(MxHeﬁ)
S

Use ax(b x ¢) =b(ac)-c(ab) and the conservation of the norm of M given by dM?3/dt=0

In the final expression neglect terms of order a,a, as well as o?

Solution LLS equation

d—Mz—Q/(I\/I xHeff)—j/MiM x(l\/l ><Heﬁ)+ 7/%(M x(M xP))

dt

S S
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Practical on Large Angle Precessional Magnetization Dynamics

Answer 1

Multiplying the Landau Lifschitz Gilbert STT (LLGS) equation vectorially by (M x)

Mde—I\':I:_N x(M xHeﬁ)+ I\j MX(M de_l\:lj + 7“/;1] MX(M x(M xP))

S

S

(i)aMx( de aM(Mde adMMz_ OthN|2

Mx——|=
dt

M, M, dt ) M, dt M, dt  °

(ii)ﬁjMx(Mx(MxP)):ﬁj [M(M(MXP))—(MxP)MM]z_I\T"Mg(MxP)
dm dm 7,

:MXE:_WX(MxHeﬁ)—I\ZFMg —M—'SMSZ(MXP)
insertin LLGS
dm dM Y e
F——}/(M xHeﬁ)+ '\;: M x o j + I\/IJS(M x(M xP))
dm | dm Y G
E=—y(|\/|xHeﬁ)+ I\ZS_—}/MX(MXHGH)—I\;:EMSZ - 'SMSZ(MXP) + JS(MX(MXP))
:>(1+052)dd—|\:|=—7/(M><Heﬁ)—;/ 2 Mx(MxHg )- ra,a(MxP)+ 73" (M x(M xP))

M (M xHy )- L a@(M xP)- % M x(MxHy )+ L (M x (M xP))

dt (1+2¢) “ 1+ a?) +a’ )M, 1+ a?)M,
:>dd—'\:|z—;/(M ><Heﬁ)—7/|\j|X Mx(l\/l xHeﬁ)+ J/I\jj (MX(MXP)) LLS
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Step 2 The total energy has three contributions, a uniaxial anistropy energy (given by the uniaxial
anisotropy constant K, the Zeeman energy due to an external bias field H, and the demagnetization
energy

E = K [1— (mn)? |- M mH, +22M2[m(Rim

S
Here, N is the demagnetization tensor

m, S'_nQC_OS(p _ 000 1 of a thin film and n is the uniaxial
m=|m, |=|sindsing |; N=|0 0 0|; n=|0 anisotropy easy axis. We define
m, cosd 0 01 0 2K M
H,=—" Hy=42M, M=——
M, M,

The effective field is defined by
oE 1 CE

H off = — = —
oM M, om

Q2 Deduce the general expression of the effective field from the general expression of the energy and
evaluate both in the case of H,=H =0 and the above given demagnetization tensor of a thin film

Practical on Large Angle Precessional Magnetization Dynamics
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Answer 2

E = K [1—(mn)? |- M mH, +22M 2|m(Nm)|

JE

1 0E 2K,

T M M_om

S

(mn)n+H, —42M _Nm

For H2=HE=O and the demagnetization tensor of a thin film

E=22M2m’

0

He,=| O
AzM m,
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Practical on Large Angle Precessional Magnetization Dynamics

Step 3 Spin torque driven orbits are in many situations close to constant energy trajectories that are
solutions to the precession term. Quite generally, it is possible to give analytical expressions for
these precession orbits upon using the conservation of the energy E (m,, m,, m,) and the norm of the
magnetization vector m2=1. (3 unknowns, 2 equations)

Q3 Give the expressions for trjacetories m,(m,) and m,(m,) (parametrization in m,) for the following
energy that includes a uniaxial anisotropy field and a bias field applied along the positive x-direction :
Evaluate these expressions for H,=H =0. What is the form of the trajectories?

Draw them schematicallly

E=K,-m?|-M mH, +2M?m?
m’+mS +m’ =1

Solution

=m, ==
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Practical on Large Angle Precessional Magnetization Dynamics

Answer 3

E=K,1-m?2|-M mH, + 22M2m? = E, = const

rnX2+myz+mZZ=1
= EO—Ku[l— mx2]+ M mH, = 22M2m?

2E 2m H H
:ny=i\/ o Tk b—H“[ﬂt—mz]=mz(ﬁ1x)

HdMs Hd d

= m =+1-m*-m?2 =m (m,)

For H_=__=_O
=>m,=x 2E, = const
dMs
2E 2
=>m =% [1- °— — =m
m, \/ M ,(m,)
2 2 2 2E
=>m - +m =1-m~=1- 0
rnx Yy 4 HdMS

Out of plane (OPP) precession orbits

m, = cosé
Z rnymax:rnxmax:Sine
y

> (13-

The orbits are circles with constant m, component.

They are out-of-plane precession (OPP) trajectories, and their center is the out of plane energy

maximum

The energy E, is for instance given by an angle 6,
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Practical on Large Angle Precessional Magnetization Dynamics

Step 4 Quite general the solutions of the precession term only, are constant energy trajectories that
can be determined from the procedure given under step 3. The precession term then describes the
rate of change of the different components m,, m,, m,. For the case H,=H,=0 this can be solved
analytically. Do this in order to deduce the precession frequency of the constant energy trajectory.

Q4 What determines the frequency? Why is this a good approximation even when a small H, or H,
would be considered? (only qualitative argument, no calculation)

Solution
@=)yH,m,
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Practical on Large Angle Precessional Magnetization Dynamics

Answer 4

Pr ecession term

0 0
C:j_l\:lz_ﬂleHeﬁ Ha=| 0 |=| 0
4zM m, Hym,
m, m, 0 Hym,m,
Ms r.ny :_7'\/'5 my X 0 :_7/'\/'3 _Hdrnxmz
m, m, H,m, 0
= mx :_7/Hdmymz
. 0’
:my:ﬂ_ldmxmz Cé
=>m =m, "
o=Hm,

The precession frequency is given only by the out of plane demagnetization field, scaled by the out
of plane component m,

In the presence of anisotropy or an in-plane bias field, this frequency remains a good approximation,
since even for small out of plane alignements 6’=10° the corresponding demagnetization field is
large. Example 4nM, of Permalloy 10 kOe

H m,= 10 kOe cos10° = 9850 Oe. This is large compared to anistropy fields (100-500 Oe) or in
plane bias fields < 1kOe.
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Practical on Large Angle Precessional Magnetization Dynamics

Step 5 An alternative derivation of the precession frequency, that can be used for more complex
trajectories is the following.

The frequency f is the inverse of the precession period T, which in turn is given by the integration over dt:
T=dt
This can be rewritten as

d
szﬁ%

Here m, can be any one of the three components m,, m,, m,.
The time derivative of m, is obtained from the precession equation (step 4)

Q5 For the case H =H_=0 this can be solved analytically. Do this, using the parametrization in m, of step

and the time derivative of step 4 in order to deduce the precession frequency of the constant energy
trajectory.

X
—arcsm

[
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Answer 5

mX max

1 . m,
_ (gt = 4 _m
Te o Imx IzH szl o Ham 1-me |

mX max

-4 arcsin——% | = A Mo =

Hym, 1-m’ Hgm,
=>o=MHm

Note, for more complicated integrals this can be solved numerically.
In some cases, analytical expressions have been derived in the
literature (see publications by Bertotti).

Practical on Large Angle Precessional Magnetization Dynamics
X
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Practical on Large Angle Precessional Magnetization Dynamics

Step 6A

The precession term corresponds to a conservative dynamics since it does not change the energy of
the system. To see this, calculate the time derivative of the energy for the precession term only and
show that this is zero

dE dE dMm dMm dM H
= = — _ —_ = = X

dt dv dt ot ot M xHe

Step 6B

Do the same as for Step 6A, but for the full LLGS and LLS equation and show that the damping term
Is always negative, but that the contribution from the spin torque term can be positive or negative.

Evaluate dE/dt then for H =H =0 and for a perpendicular polarizer P = (0, O, 1) (derivation for LLS
only, use step 4).

dM + i M x(M xP)
dt M

S S

dM a
LLGS —=-MxH4 + —Mx
o - M ety

d
s ShaopMxHy )5
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Answer 6A

dE_dEAM _ . dM _

dt dM dt " dt Mt (MxH )=0 with a(axb)=0

Answer 6B for LLGS

Practical on Large Angle Precessional Magnetization Dynamics

dE_dEAM __ . dM

dt  dM dt “dt
dE_ (04 dM 7/aj
E——Heﬁ. _ﬂVIXHeﬁJr MSMX & + IVISMx(I\/I xP)j
dE a dv 78,
T H, | EMx—2 |-H, | XM x(MxP
dt T M, thJ eﬁ[l\/ls X(X)]
dE o dM 74,

- M x H 4 )+ (M x P)( M x H
dt M, dt( § erf)Jrl\/ls( <PAMxHy ) Rewrite LLGS

MxH, =—2M @y M 3 o (MxP)

y dt M, dt M,
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Practical on Large Angle Precessional Magnetization Dynamics

Answer 6B for LLGS

dt M, dt

+&(M X
M

S

a.
dE _ a dM —ldM + @ I\/de—M+—'M x(M xP)
y ot M, d M,

YA

H_J

Damping part
always <0

E « (dM T

P —ldMJr 9 deM+
y dt M| dt
_id_M(Mxp)
M, dt
- /
~"

STT part <0 or >0
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Practical on Large Angle Precessional Magnetization Dynamics

Answer 6B for LLS

de dE dM dMm dM a
— =—-H. . — —r—yWMxH_ )-y—
dt  dM dt “ ot dt Mt M
dE dM
i eﬁ?z_Heff(_7<MxHeff)_7/MiMx(MXHeff
dE a.
E“(VMiSHeﬁ(MX<MXHeff))_?/M—JSHeff(MX(MXP))J
dE a,
Ez—yMis(MXHeff)2+}/M—’S(I\/I><P)(M><Heff)
- N " /
Damping part STT part <0 or >0
always <0

Evaluation of dE/dt for HQ:HE=0 and P=(0,0.1).

(il_ltzz—VMis(M xHeﬁ)2+7|a—js(M XP)('V' ><Heff)
C;—Itzz—}/MisMsszmzz(mi+m)2,)+7l\a/|_jsMsszmz(m5+m)2/)
%5z—%ﬁLMfHﬂ@@—mﬁ+yﬁLM§HJm@—m9

S

S

MxWxHﬁﬁyﬁquwxm)

S S

)+ )/%(M ><(|\/I xP))J

S

m (0 m,
(M xP)=M, m, x| 0|=My —-m,
m,) (1 0
Hymm,
MxHg4 =M -Hmm,
0
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Practical on Large Angle Precessional Magnetization Dynamics

Step 7

In the case of spin torque driven excitations, the resulting limit cycles are in many situations close to
the constant energy trajectories calculated in step 3, 4. This is in particular truk for the perpendicular
polarizer that makes the magnetization to precess on limit cycles that are OPP trajectories; In spin
torque driven excitations the time derivative of the energy dE/dt at a given point M is not zero, but the
integral of dE/dt over one period vanishes. This makes sense, since in spin torque driven excitation
the spin torque balances the damping torque, but only over one period.

From the vanishing of the intergral one can derive an expression for the current density, expressed
here in the units of field via the prefactor &, of the spin torque term.

J‘jj_'tzdt:oz_yMij(M xHeff)zdter%J.(l\/l X P)M x H g it

aI(M x H 4 )zdt
—a =

J J(M xP)(I\/l xHeﬁﬁt

S

Q7 Evaluate this relation for H_=H =0 and for a perpendicular polarizer P = (0, 0, 1) to provide a
relation between the out of plane magnetization component m, and the current density J (expressed
in the units of field via the prefactor a). What is the critical current density a,, for which the
magnetization points out of plane?

Keep in mind that m,=const on OPP trajectories, induced by a perpendicular polarizer, see step 3
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Practical on Large Angle Precessional Magnetization Dynamics

Answer 7

Iz—fdt:Oz—yMij(M def)Zdt+7%J(M xP)(I\/l xHeﬁﬁt

aj(l\/l xH 4 )Zdt
—a =

l j(l\/l xP)(M xHeff)it

S

Evaluation of dE/dt for H2=H§=O and P=(0,0,1).

2 2 2
B aH f m, (1— m, bt Since m,=const on OPP trajectories,

j H, J mz(l— mf)it induced by a perpendicular polarizer

aHimL-m?)f ot
%= Hdmz(l—mzz)jdt
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a.
a=oHm o&m=——
aH
a This expression indicates that the magnetization is stabilized on a limit
m, = ’ cycle whose out of plane component m, is given by the balance between
aH : : . .
d the spin torque (aj) and the damping torque. The higher the current, the

higher the out of plane component.

a. . . .
m-=—,-<1=a. =aH, Critical current for out of plane orientation




Practical on Large Angle Precessional Magnetization Dynamics

Step 8
Now you can use the results of step 4, 5 (precession frequency of OPP trajectories) and of step 7 to
calculate the frequencies as a function of the spin polarized curren a,. Provide an interpretation.
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Practical on Large Angle Precessional Magnetization Dynamics

Answer 8

Step4,5 @=)yH,m,

m. =
Step 7 z aH,

a
0):7’Hdmz:7_
o

higher frequencies.

The frequency increases linearly with current.
More spin current means, more energy gain.

More energy gain, means that the system can visit
orbits of higher energy, which are characterized by

Thus, the frequencies increase with current.

The above relation is a good approximation,

even when an in-plane bias is applied, (except

close to the critical current, where f drops to

zero)

- — Numerical

4 6 8 10
J (10" A/mR)

12 14
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Step 9
In order to reverse the magnetization using a perpendicular polarizer and a short current pulse, what
Is the minmum pulse duration for a current density of 10”7 A/cm? and a damping constant a=0.02?

B
Use the following relationships and values \ 3

hoJ
a, =—
2e Mt

|

A 2
M. 176100 1 4 Pn
cm Oe-s

t=3nm=3-10"cm;  A=(100nm)’ =10 cn?’

n; J= h ::g_:g.lc)—l?emLOe

n~03; M_=800

Practical on Large Angle Precessional Magnetization Dynamics
]
2
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Answer 9

a;
(04 a zi J
a ! 7 2e Mst77
=y—t=352:10" =2 o _a3.q0% MU0, ;A 03
a J T
352 L A O 550" ™M 3.107em
f ==—=—=GHz=5.6GHz== 03 om
2r T a, =3310°.100 ——~_Oe
T_10° . ow0e 100 800-3-10
AMl=—=——-s~=10"s= S =
> 556 P a, =400e
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