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Orbital moments of the d-shell
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orbital wave functions of 3d shell

The upper three wave functions have
maxima in the xy, xz, yz planes, the 
lower two have maximia along x,y and 
z coordinate. In a magnetic field the 
degenerate sublevels split. 
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1. Spin-Orbit-coupling
Coupling of spin and orbital moment yields the total 
angular momentum of electrons:

The spin-orbit (so) interaction or LS-coupling is
described by:
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Spin-orbit coupling is due to the Zeeman – splitting of the spin
magnetic moment in the magnetic field that is produced by the 
orbital moment:

 Bm=E LSSO
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• In rest frame of electron, E and B – fields act on electron due to positive 
charge of the nucleus:

• The magnetic field is proportional to angular momentum of electrons: BL~ L:

• In magnetic field BL, S precesses with a angular velocity ωL and couples to L:

• L⋅S can be evaluated via: 

• Yielding:
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2. Fine structure
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Terms with same n and l – quantum numbers are energetially split
according to whether the electron spin is parallel or antiparallel to the 
orbital moment. This is called the fine structure of atomic spectra. 
Example hydrogen atom:

The total splitting of 3/2β increases with the number of electrons in the 
atom and becomes in the order of 50 meV for 3d metals. 
LS-splitting lowers the energy for L and S antiparallel. Therefore level
filling starts with lowest j-values. 

+1/2β

-β



Why ist λ changing sign?
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LS coupling for light and heavy atoms
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Russel-Saunders coupling for light atoms (LS-coupling): 
This approximation assumes that the LS-coupling of individual electrons
is weak compared to the coupling between electrons.
Orbital moments of all electrons couple to a total angular momentum L 
and spin moments of all electrons couple to S. Finally L and S couple to J:

jj-coupling of heavy atoms: 
In the limit of big LS – coupling, the spin and orbital moment of each
individual electrons couples to j, and all j are added to total angular 
moment J. 
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Total angular moment and 
total magnetic moment
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Total magnetic moment is: 

Total angular moment J and the total magnetic moment are not collinear. 
However, in an external magentic field, mJ+S precesses fast about J, and J
precesses much slower about Hz. Thus the time average component of the 
magnetic moment 〈m〉 = m|| is parallel to J .
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Different total angular moments J
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3. Zeeman-splitting
• In an external field the quantization axis is defined by the field axis Hz

• A state with total angular momentum J has a degeneracy of 2J+1 without
field. These states are labled according to the magnetic quantum
number mJ : –J ≤ mJ ≤ J.

• In an external field Hz  the states with different mJ have different energy
eigenstates, their degeneracy is lifted:

• The energy eigenstate are equidistant and 
linearly proportional to the external field Hz.
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LS and Zeemann Splitting 
for L=3, S=3/2, λ < 0
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λ < 0
Conversation:
1000 cm-1 = 0.124 eV
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Landé factor
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Z-component of the total magnetic moment:

Hz

jm ( )1+JJ

21
23

23−
21−



Evaluating the Landé-factor
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From 1. Lecture we have for the paramagnetic response in an 
external B - field:

Considering L+2S projected onto J and J project onto the B-axis:

This yields:

Using:

We find:

Which must equal:
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Hz =0, T=0
gs degenerate, all 
atoms in the 
same state

Hz >0, T= 0
Lifting of 
degeneracy, all 
atoms in the gs

Hz >0, T>0
At high temperature population 
of higer energy states
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4. Thermal properties

Thermal population of the Zeeman-split levels in the ground state (gs). 
Example: J=1, mJ=-1,0,+1

Discrete energy levels with                                    
mJ=-J,…J

Average thermal energy:

Magnetization:

2. Lecture: ParamagnetismH. Zabel, RUB
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Thermal average of the magnetization

Thermal average of the magnetic moment follows from the partition function:

with:
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Bi is the Brillouin function. The Brillouin function replaces the Langevin 
function in case of discrete energy levels. 
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Examples for the Brillouin-Function BJ:
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4. Low and high temperature approximations

Low temperature approximation (LTA) for: 

the Brillouin function approaches 1 

The thermally averaged magnetization then becomes:

This corresponds to the saturation magnetization MS. The saturation 
magnetization can not become bigger than given by j. It corresponds 
to a state in which all atoms occupy the ground state.  

2. Lecture: ParamagnetismH. Zabel, RUB
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High temperature approximation

In HTA for                the Brillouin function             can be approximated by )~(Bj α1<<α~

Then follows for the magnetization

With the effective moment:

And the Curie constant:

2. Lecture: ParamagnetismH. Zabel, RUB



21

T
C

H
M

z
=

∂
∂

=χ

With C we can calculate peff and  j. From j the valence of a chemical 
bond can be determined. Thus peff is important for chemistry. 

Curie law of the magnetic susceptibility
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5. Van Vleck paramagnetism

22

• For J = 0 the paramagnetic susceptibility becomes zero.  

• J = 0 occurs for shells, which are less than half filled by one electron

• In this case higher order terms contribute to the susceptibility, in 
particular a diamagnetic term of second order, which is positiv. 

• The higher order terms are due to excited states which may have a J ≠
0, even if for the ground state J = 0. 

• Calculating in second order perturbation theory contributions to only
the ground state, one obtains:

• Van Vleck contribution to the susceptibility is weak, positive and 
temperature independent. But it plays a decisive role for the 
paramagnetism of Sm and Eu ⇒ 3. Lecture. 
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6. Paramagnetism of conduction electrons
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For Fermi particles with spin S=1/2 we expect:

Expected magnetization:

which has 1/T dependence. 
Experiment shows:
α. χ is independent of T 
b. has a value 1/100 of the calculated value at 300 K.

 Contradiction!
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Magnetization of a free electron gas
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Spin split DOS 
for free electrons
in an external
field
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Pauli Spin Suszeptibility of a free electron gas
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• Pauli spin susceptibility has the correct form. 

• It is independent of temperature

• It is reduced by the factor T/TF ~ 100. 

• Closed shells have no density of states at the Fermi level, thus
closed shells do not contribute to χPauli.  Only s,p and d-electrons of 
unfilled shells contribute. 
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• Free electrons also contribute to the diamagnetic response in an 
external field, forming Landau cylinders. 

• According to Ginzburg und Landau the diamagnetic contribution to
the susceptibility of the conduction electrons is:

• Exemption superconductors, in which case χ=-1.

• Considering the paramagnetic and diamagnetic response, the total 
susceptibility of a free electron gas is:
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Landau diamagnetism
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Experimental Pauli susceptibilities
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Experimental results for
susceptibilities of monovalent 
and divalent metals:

From E.Y. Tysmbal

mono

divalent

H. Zabel, RUB



Summary of susceptibilities
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