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1. Classical magnetic moments 
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Magnetic dipole moment = current × enclosed area

Loop current generates a 
magnetic field

Loop current has an angular 
momentum
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γ = gyromagnetic ratio, me= electron mass
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Torque and precession
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Zeeman energy of magnetic moment in an external magnetic field: 
Bm-=E


⋅
Energy is minimized for m || B. B is the magnetic induction or the 
magnetic field density. Applying B, a torque is exerted on m: 

BmT


×=
If m were just a dipole, such as the electric dipole, it would be
turned into the field direction to minimize the energy. However, m is
connected with an angular momentum, thus torque causes the
dipole to precess: 

BLγ
dt
LdT
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×==

Assuming B = Bz, the precessional frequency is:

zL Bγ=ω
Bz

ωL is called the Lamor frequency. See also EPR, 
FMR,  MRI, etc.  
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Bohr magneton
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An electron in the first Bohr orbit with a Bohr radius rBohr has the angular 
momentum:

Then magnetic moment is:
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Because of negative charge, L and m are opposite. 
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µB is the Bohr magneton. [µB] = 9.274 x 10-24 Am2.

Magnetic moment: [m] = A m2

== ω2
BohrermL
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LOrb SSpin S of the electon contributes to the 
magnetic moment:
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Including orbital and spin contributions, the magnetic moment of an 
electron is:
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Electron spin

The missing factor ½ is of quantum mechanical origin and will be
discussed later. 
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Magnetic field and magnetic induction
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Oersted field H due to dc current: 
πr2
IH =

Any time variation of the magnetic 
flux Φ = BA  through the loop 
causes an induced voltage: ( )AB

dt
dUind


⋅−=

Therefore B is called the magnetic induction or the magnetic flux
density B = Φ/A. 
In vacuum both quantities are connected via the permeability of the
vacuum: HμB 0=
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1. Magnetization is the sum over all 
magnetic moments in a volume element 
normalized by the volume element: 

2. Thermal average of the magnetization: 

3. Magnetic susceptibility:

4. Magnetic Induction: .
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Definitions

H = magnetic field, usually externally applied by a magnet.  
µ0 = magnetic permeability of the vacuum. 
µr = relative magnetic permeability  µr = (1+χ)  (tensor, or a number for collinearity)
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Potential energy (Zeeman – term):
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1. Derivative → magnetic moment:

2. Derivative → Susceptibility:

Potential Energy and Derivatives
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What is more fundamental, H or B?
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( ) [ ] N=F                ×= BvqF
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Lorentz force:

Vector potential: [ ] 2∇ mVsT /AB ==B                    ×=


Zeeman energy: [ ] WsVAsJ ===E                   •= BmE
-

Oersted field: [ ] mA=H                     =
πr2
I

H

Magnetization: [ ] mA=M                   χH=M
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Classification

121. Lecture: Magnetic Response

Application of an external field:
a. Paramagnetism: χ>0 und µr >1

b. Diamagnetism: χ< 0 und µr <1

Ideal diagmagnetism, realized in superconductors with M and B antiparallel, 
for χ = − 1 and µr =0.

Magnetic moments align parallel to
external field, field lines are more
dense in the material than in vacuum. 

External field is weakend by inducing
screening currents according to Lenz 
rule. Field lines are less dense than
in vacuum. 

c. Ferromagnetism: Spontaneous Magnetization without
external field due to the interaction of 
magnetic moments

µr attaines very high values for
ferromagnets,  > 104-105

H. Zabel, RUB
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Consider a non-relativistic Hamilton operator for electrons in an 
external magnetic field:
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2. Electron in an external field

The vector potential:         is defined by the Coulomb gauge:                                                
and using      

AB
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Where we assumed an average over the electron orbit
perpendicular to the magnetic field: 

*Lz is here a dimensionless quantum number

*
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Hamiltonian for electron with spin
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Considering the electron spin in the external field with a Zeeman energy:

224-1027.9
2

- Am
m

e
B ×==µ



2=sgLandé factor

Bohr magneton



( )


  

2
z

z B~
smdiamagnetiB~

orbital spin
ismparamagnet

energy
kinetic

22
22

12
2

2
H aB

m
eSLB

m
p

z
e

zzzB
e

++µ+=

+

Hamilton operator for spin and orbital contributions of a single bond
electron then is: 
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The gS=2 for the electron is put into the Schrödinger equation by „hand“ but 
would occur naturally using the Dirac equation. The exact value of 2.0023 is
determined by QED.  



Response functions
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Diamagnetic response
for Z electrons

Paramagnetic response *0
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*For single atom we can not define a paramagnetic susceptibility. This is only
possible for an ensemble of atoms. 
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3. Properties of the Langevin diamagnetism

 χLangevin is constant, independent of field strength;
 χLangevin is induced by external field;
 χLangevin < 0, according to Lenz‘ rule;
 χLangevin is alway present, but mostly covered by bigger and positive 

paramagnetic contribution;
 χLangevin the only contribution to magnetism for empty or filled

electron orbits;
 χLangevin yiels 〈a〉 and the symmetry of the electron distribution;
 χLangevin is proportional to the area of an atom perpendicular to the

field direction, important for chemistry;
 χLangevin is temperature independent.

With Z electrons in an atom and an effective radius of <a> 
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Examples for Diamagnetism
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Material χLangevin at RT 

He -1.9 ⋅ 10-6cm3/mol 
Xe -43 ⋅ 10-6cm3/mol 
Bi -16 ⋅ 10-6cm3/g 
Cu -1.06 ⋅ 10-6cm3/g 
Ag -2.2 ⋅ 10-6cm3/g 
Au -1.8 ⋅ 10-6cm3/g 

 ( χ is normalized to the magnetization of 1 cm3 containing one 1 Mol of gas at 1 Oe)

• All noble metals and noble gases are diamagnetic. In case of the nobel 
metals Ag, Au, Cu mainly the d-electrons contribute to the diamagnetism. 

• In 3d transition metals the diamagnetismus is usually exceeded by the
much bigger paramagnetic response. 

H. Zabel, RUB
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Anisotropy of diamagnetismus for Li3N

Levitation of diamagnetic materials

1. Lecture: Magnetic ResponseH. Zabel, RUB
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(free = without interactions)
Orientation of permanent and isolated magentic moments in an external 
field Bz = µ0Hz parallel to the z-axis (orientational polarization)
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4. Paramagnetism of free local moments: 
classical treatment
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Langevin function
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Magnetization of paramagnetic moments in an 
external field
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Curie-Suszeptibilität χCurie in HTA with the Curie-constant C:
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Paramagnetic Susceptibility 
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Linear dependence fullfilled
at high temperatures. At low
T often deviations observed
due to interactions. 

But: However, magnetism is not a classical problem, thus Langevin function is only a rough
approximation. As quantum mechanics allows only discrete values for the z-
component of the magnetic moments, a different approach has to be chosen ⇒
Brillouin function replaces the Langevin function. –
The susceptibility of superparamagnetic particles containing a macrospin can be
treated classically as the spin orientation of nanoparticles in the field is continuous. 
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Susceptibility of the Elements
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From J.M.D. Coey

Paramagnetic

Diamagnetic



Summary
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3. Paramagnetic response (HTA):

2. Diamagnetic response:
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1. Hamilton operator for an electron in an external field:
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