Ultrafast magnetization dynamics: the role of angular momentum

Andrei Kirilyuk

Radboud University Nijmegen, The Netherlands

Magnetization dynamics and switching

Consequence 1: Inertia-free motion

$$\frac{d\vec{M}}{dt} = \gamma \cdot \left[\vec{M} \times \vec{H}\right]$$

The motion happens only as long as the field is there

Consequence 2: conservation of angular momentum

Einstein – de Haas effect

A. Einstein & W.J. de Haas, *Experimenteller Nachweis der Amperèschen Molekülströme*, Verhandl. Deut. Phys. Ges. **17**, 152–170 (1915).

S. J. Barnett, *Magnetization by Rotation*, Physical Review 6, 239–270 (1915).

Consequence 3: Precessional magnetization reversal

Kaka et al, APL **80**, 2958 (2002); Gerrits et al, Nature **418**, 509 (2002); Schumaher et al, PRL **90**, 017201 (2003).

The fastest way to reverse the magnetization is via precession

Angular momentum transfer and two ways of reversal

usual (practical)

$$\frac{dM}{dt} = -|\gamma| \left(M \times H^{eff} \right) + \frac{\alpha}{M} \left(M \times \frac{dM}{dt} \right)$$

from spins to lattice

$$\frac{dM}{dt} = -\left|\gamma\right| \left(M \times H^{eff}\right) + \frac{\alpha}{M} \left(M \times \frac{dM}{dt}\right)$$

from spins to field

6

Outline of the lecture

- Angular momentum gone, inertia recovered: antiferromagnets
- Tuning angular momentum in ferrimagnets: faster precession / switching
- Angular momentum conservation vs exchange interaction

Outline of the lecture

- Angular momentum gone, inertia recovered: antiferromagnets
- Tuning angular momentum in ferrimagnets: faster precession / switching
- Angular momentum conservation vs exchange interaction

Ballistic (inertial) magnetic dynamics?

Consequence of the LL equation: Inertia-free motion

$$\frac{d\vec{M}}{dt} = \gamma \cdot \left[\vec{M} \times \vec{H}\right]$$

The motion happens only as long as the field is there

Inertia may appear when the angular momentum is gone!

Andreev and Marchenko, Sov. Phys. Usp. 23, 21 (1980)

Magnetic phases in HoFeO₃

Inertia-driven spin reorientation in HoFeO₃

Kimel et al., Nature Physics 5, 727 (2009)

Ultrafast reorientation in HoFeO₃

Andrei Kirilyuk, Targiviste – August 2011

14

Heat driven vs field-driven dynamics

Outline of the lecture

- Angular momentum gone, inertia recovered: antiferromagnets
- Tuning angular momentum in ferrimagnets: faster precession / switching
- Angular momentum conservation vs exchange interaction

To reverse the magnetization fast(er):

apply stronger torque
or

$$\frac{d\vec{M}}{dt} = \gamma \cdot \left[\vec{M} \times \vec{H}\right]$$

• reduce associated angular momentum

Solution: make the field stronger?

letters to nature

The ultimate speed of magnetic switching in granular recording media

I. Tudosa¹, C. Stamm¹, A. B. Kashuba², F. King³, H. C. Slegmann¹, J. Stöhr¹, G. Ju⁴, B. Lu⁴ & D. Weller⁴

We therefore believe that our experiment reveals 'fracture of the magnetization' under the load of the fast and high field pulses, putting an end to deterministic switching as we know it today. \Box

Speed limit ahead

C. H. Back and D. Pescia

Are there any limits to what science and technology can achieve? When it comes to recording data in magnetic media, the answer is yes: there is a natural limit to the speed at which data can be encoded.

2 ps, several Teslas

end of ultrafast magnetism?

Any way around?

Ultrafast laser-induced demagnetization

Ultrafast laser-induced demagnetization (Ni film)

Beaurepaire et al. (1996)

Stamm et al. (2007)

see any difference??

Simple model to describe the process

localized atomistic spin model with a Heisenberg exchange

electron temperature is introduced via stochastic field term

$$\frac{d\mathbf{s}}{dt} = \gamma [\mathbf{s} \times (\mathbf{H} + \zeta)] - \gamma \lambda [\mathbf{s} \times [\mathbf{s} \times \mathbf{H}]]$$

$$\langle \zeta_{\alpha}(t)\zeta_{\beta}(t')\rangle = \frac{2\lambda T}{\gamma\mu_0}\delta_{\alpha\beta}\delta(t-t')$$

Example: thermalization of Gd spins in GdFe alloy

temperature is applied as a step at t=0

T.A. Ostler et al., PRB (2011)

Landau-Lifshitz-Bloch equation

Assuming that the heat bath (phonons or electrons) acts much faster than the spins, the bath degrees of freedom can be averaged out. The ensemble-averaged spin polarization gives the magnetization m

Garanin, Phys. Rev. B 55, 3050 (1997).

to summarize here:

- laser does change M (and L) very fast
- but only to disorder the system
- can we still do something useful with it?

Ferrimagnet with a compensation point(s)

samples in our experiments: Gd_{20-30%}Fe_{65-75%}Co_{5%}

GdFeCo – static measurements

The vanishing of the total magnetic moment (T_M) is accompanied by the divergence of coercive field (H_c).

samples by A. Tsukamoto and A. Itoh

Ferrimagnetic resonance

Landau – Lifshitz – Gilbert equation for two sublattices:

$$\frac{d\vec{M}_{TM}}{dt} = \gamma \left[\vec{M}_{TM} \times \left(\vec{H}_{TM}^{eff} - \lambda \vec{M}_{RE} \right) \right]$$
$$\frac{d\vec{M}_{RE}}{dt} = \gamma \left[\vec{M}_{RE} \times \left(\vec{H}_{RE}^{eff} - \lambda \vec{M}_{TM} \right) \right]$$

$$\gamma_{eff}(T) = \frac{M_{RE}(T) - M_{TM}(T)}{\frac{M_{RE}(T)}{|\gamma_{RE}|} - \frac{M_{TM}(T)}{|\gamma_{TM}|}} = \frac{M(T)}{A(T)}$$

$$\omega_{FMR} = \gamma_{eff} H^{eff} \to \infty \quad \text{if} \quad T = T_A$$

also
$$\alpha_{eff} \rightarrow \infty$$

Dynamics of magnetization in GdFeCo.

Phys. Rev. B 73, 220402 (2006)

High frequency + high damping near T_A

Phys. Rev. B 73, 220402 (2006)

Can this be realized in practice?

Andrei Kirilyuk, Targiviste – August 2011

Hysteresis loops with pump laser on

Laser-induced magnetization reversal

Contrast reverses in 0.7 ps

≻Also M_{Gd} is affected by the laser pulse on a sub-ps time scale (?)

>Decrease of the angular momentum does work!

Stanciu et al, Phys. Rev. Lett. 99, 217204 (2007)

Andrei Kirilyuk, Targiviste – August 2011

Outline of the lecture

- Angular momentum gone, inertia recovered: antiferromagnets
- Tuning angular momentum in ferrimagnets: faster precession / switching
- Angular momentum conservation vs exchange interaction

To distinguish the two sublatices

Magneto-optical response: weak, *k*-dependent X-ray response: strong, k-integrated quantities number of holes, spin monent, orbital moment

XMCD contrast

Andrei Kirilyuk, Targiviste – August 2011

Femto slicing (BESSY)

optical pump – X-ray probe fs time-resolved measurements

Ultrafast dynamics of sublattices

ferromagnetic GdFeCo!

Atomistic simulations

- Iocalized atomistic spin model with a Heisenberg exchange
- exchange parameters (Fe-Fe, Gd-Gd, and Fe-Gd) obtained by fitting static M_{Fe,Gd}(T) dependencies.
- stochastic term added to the effective field

$$\frac{d\mathbf{s}}{dt} = \gamma [\mathbf{s} \times (\mathbf{H} + \zeta)] - \gamma \lambda [\mathbf{s} \times [\mathbf{s} \times \mathbf{H}]]$$
$$\langle \zeta_{\alpha}(t) \zeta_{\beta}(t') \rangle = \frac{2\lambda T}{\gamma \mu_0} \delta_{\alpha\beta} \delta(t - t')$$

reversing field is present during the process

simulations by the group of R.W. Chantrell

Simulation results

ferromagnetic state reproduced!

Simulation results

ferromagnetic state reproduced!

Therefore:

- angular momentum controls the switching
- different demagnetization times of the sublattices
- exact compensation is not required

