Femtosecond spin dynamics in two- and threemagnetic-center molecules

W. Hübner and G. Lefkidis

Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Box 3049, 67653 Kaiserslautern, Germany

Targoviste, 31 August 2011

- 1. History: theoretical achievements in spin dynamics
- 2. Introduction: theoretical and background aspects
- 3. Clusters with two magnetic centers
- 4. Clusters with three magnetic centers: magnetic logic
- 5. Role of bridging atoms
- 6. Conclusions

1. History: theoretical achievements in spin dynamics

- 2. Introduction: theoretical and background aspects
- 3. Clusters with two magnetic centers
- 4. Clusters with three magnetic centers: magnetic logic
- 5. Role of bridging atoms
- 6. Conclusions

Relevant time scales for the laser control of magnetism

phonon-phonon interaction (anharmonicity, surface, impurities) thermal conductivity, phonon-magnon coupling

Femtosecond pump-probe (magneto-) optics

- Reflectivity
- MOKE
- τ_{spin} < 1 ps

FIG. 1. (a) Experimental pump-probe setup allowing dynamic longitudinal Kerr effect and transient transmissivity or reflectivity measurements. (b) Typical Kerr loops obtained on a 22 nm thick Ni sample in the absence of pump beam and for a delay $\Delta t = 2.3$ ps between the pump and probe pulses. The pump fluence is 7 mJ cm⁻². (c) Transient transmissivity [same experimental condition as (b)].

3-Temperature model

$$C_{e}(T_{e})dT_{e}/dt = -G_{el}(T_{e} - T_{l}) -G_{es}(T_{e} - T_{s}) + P(t), C_{s}(T_{s})dT_{s}/dt = -G_{es}(T_{s} - T_{e}) - G_{sl}(T_{s} - T_{l}) C_{l}(T_{l})dT_{l}/dt = -G_{el}(T_{l} - T_{e}) - G_{sl}(T_{l} - T_{s})$$

- Good agreement with experiment
- Uniform temperature
 profile

E. Beaurepaire, J.-L. Marle, A. Daunois and J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996)

History: theoretical achievements I Spectral width → bleaching in Ni

Wide pulse (in frequency domain)
populates target states
→ transition paths blocked
→ bleaching

Affects both charge and spin dynamics

History: theoretical achievements I Bleaching effect \rightarrow magnetization dynamics in FM

FIG. 2. With the presence of the spin-orbit coupling, the laser field can effectively influence the demagnetization. The intensity I (a.u.) is 0.03 (long-dashed line), 0.3 (dot-dashed line), and 1.50 (solid line). Inset: the exponential dependence of M(I) on the laser intensity I.

Time-dependent problem

$$i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = H |\Psi(t)\rangle$$

Ni

- Explicit dependence of magnetic moment on laser intensity
- Saturation for I > 0.5 (bleaching effect)
- T < 10 fsec

History: theoretical achievements II Coherent dephasing intrinsic vs extrinsic quantities

FIG. 1. Effect of exchange interaction $J(J=J_0/10 \text{ and } J_0)$ on spin [(a) and (b)] and charge dynamics [(c) and (d)]. Exchange interaction dominates the spin decay.

FIG. 2. Effect of spin-orbit coupling λ on spin dynamics. The solid curve is for λ =0.07 eV while the dashed curve is for λ =1 eV. SOC may speed up the spin dynamics only in heavy elements.

- Dephasing results from exchange interaction and spin-orbit coupling
- High-speed limit of intrinsic spin dynamics ~ 10 fsec

History: theoretical achievements II Coherent dephasing intrinsic vs extrinsic quantities

Ni

- Charge dynamics
 preceeds spin dynamics
 -> spin memory time
- Fast decay results from loss of coherence
- Increased exchange interaction speeds up spin (rather than charge) dynamics
- ~10 fsec

G. P. Zhang and W. Hübner, Appl. Phys. B 68, 495 (1999)

4 Types of dynamics

- a) Adiabatic solution of Hartree-Fock
- b) Evolution of matrix Hamiltonian
- c) Solution of the TD-HF equation
- d) Full quantum kinetic solution

Y. Pavlyukh and W. Hübner, Eur. Phys. J. D 21, 239 (2002)

Effects of Gaussian Distribution Width W

Dynamics depends on spectral width \rightarrow bleaching

W. Hübner & G. P. Zhang, Phys. Rev. B 58, R5920 (1998)

Spin Effects of Excited-State Distibution

Magneto (-optical) Response in Ferromagnetic Ni

W. Hübner and G. P. Zhang, Phys. Rev. B 58, R5920 (1998)

Nonlinear Magneto (-optical) Response in Ni

G. P. Zhang and W. Hübner, Appl. Phys. B 68, 495 (1999)

Dephasing of the Excited State

Energy

Ingredients of the Electronic Theory for Ni

• Hamiltonian:

$$\begin{split} H &= H_{band}(E_{\mathbf{k}}) + H_{electron-electron}(U, J, \Delta J) \\ &+ H_{spin-orbit}(\lambda_{s.o.})[+H_{laser}(E_{el.mag.})] \end{split}$$

• diagonalization of Hamiltonian: Schrödinger equation

 $H\psi_{\mathbf{k},n}(0) = E_{\mathbf{k},n}\psi(0)_{\mathbf{k},n}$

• time evolution of states according to eigenvalues

$$\psi_{\mathbf{k},n}(t) = \psi_{\mathbf{k},n}(0)e^{iE_{\mathbf{k},n}t/\hbar}$$

• pump pulse: preparation of initial state distribution

$$\Psi(0) = \sum_{\mathbf{k},n} p_{\mathbf{k},n} \psi(0)_{\mathbf{k},n}$$

 probe pulse: real-time monitoring of spin and charge dynamics from 100 as to 1 ps

History: theoretical achievements III Population dynamics \rightarrow magnetization dynamics in FM

Time-dependent problem

 $i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = H |\Psi(t)\rangle$

Ni

- Cooperative effect of laser pulse and SOC
- Controllable process!
- $T_1 \sim 40$ fsec

History: theoretical achievements III Separability of spin and charge dynamics in Ni

TR dynamical Kerr-effect, as probe for magnetism

one center, theory: separability of spin and charge dynamics

- For short laser pulses charge dynamics preceeds spin dynamics
- Magnetically nonimportant higher excited states dominate dynamics on first few femtoseconds

G. P. Zhang, W. Hübner, G. Lefkidis, Y. Bai, and T. F. George, Nature Physics 5, 499 (2009)

Quantum Chemical Methods

Doubly Embedded Cluster Models

1st embedding shell: ECPs for better description of environment of O atoms 2nd embedding shell: Madelung potential

K. Satitkovitchai, Y. Pavlyukh, and W. Hübner, Phys. Rev. B 72, 045116 (2005)

Theory for NiO [bulk and (001) surface]

K. Satitkovitchai, Y. Pavlyukh and W. Hübner, Phys. Rev. B 67, 165413 (2003)

NiO Cluster – *d*-Level Splitting

O. Ney, Ph. D. thesis, Martin-Luther-Universität Halle-Wittenberg (2003) R. Gómez-Abal, O. Ney, K. Satitkovitchai and W. Hübner, Phys. Rev. Lett. **92**, 227402 (2004)

Ab Initio Theory of NiO Clusters

[#]W. C. Mackrodt and C. Noguera, Surf. Sc. Lett. **457**, L386 (2000)

MC-SCF CAS: Levels for NiO (001) & bulk

- Highly correlated system
- High spin density
- Localized discrete intragap *d*-levels
- Agreement with experiment

G. Lefkidis & W. Hübner, Phys. Rev. Lett. 95, 77401 (2005) Bulk: R. Newman & R. M. Chrenko, Phys. Rev. 114, 1507 (1959) Surface: B. Fromme et al., Phys. Rev. Lett. 77, 1548 (1996)

Results: Spin-Orbit Coupling NiO (bulk)

Experiment: M. Fiebig et al., Phys. Rev. Lett. 87, 137202 (2001) K. Satitkovitchai, Y. Pavlyukh and W. Hübner, Phys. Rev. B 67, 165413 (2003)

Four-Level System

PROs:

- Faster (50 fs) than present methods (wall motion, precession and current switching)
- A variety of possible materials (magnetic semiconductors, metallic and nonmetallic nanostructures, magnetic oxides)
- Near field optics is conceptually very similar to passing switching currents through leads on nanowires
- Externally tunable
 - fast and dissipative for static devices.
 - less dissipative and slower for mobile devices.

CONs:

No experimentally demonstrated... Yet!!

Results: NiO (001)

• First results for NiO, showing the possibility of all optical spin switching in the subpicosecond regime

• Tuning photon energy, intensity and width of the laser pulse

FWHM = 59 fs, Imax \approx 1014 W/cm2

FWHM = 117 fs, Imax \approx 1.2·1014 W/cm2

R. Gómez-Abal et al., Phys. Rev. Lett. 92, 227402 (2004)

Results: NiO (001) with CAS-SCF + SOC

- Control up to more then 10 duty cycles
- Phase between states important
- Damping between cycles leads to total magnetization reversal?

Phonons: local symmetries in NiO bulk

Phonons: local symmetries in NiO bulk

 Δ -Optical $O_h / D_{4h} / C_s$

Historic achievements IV Electron-phonon coupling in NiO

force matrix \rightarrow normal modes \rightarrow quantization \rightarrow electron-phonon interaction

no phonons

phonons affect symmetry
 ⇒ different selection rules

• lattice temperature dependence

phonons

G. Lefkidis and W. Hübner, J. Mag. Mag. Mater. 321, 979 (2009)

History: theoretical achievements V Spin-lattice relaxation time $\tau_{SL} \approx 48$ psec for Gd

FIG. 1. (a) Direct process, (b) Orbach process, and (c) Raman process.

- Good agreement with experiment
- Time given by spin-orbit induced magnetocrystalline anisotropy energy
- Three phonon involving processes
 - Direct process (one-phonon scattering, very low T)
 - Orbach process (crystal-field splitting, low T)
 - Raman process (two-phonon scattering, moderate T)
- Phonon-magnon coupling
- 2-phonon processes → high-temperature theory (for low-temperature plateau)

rate equation $\dot{N}_{b} = \frac{9 \sum_{mn} |\langle a | v_{n}^{m} | b \rangle|^{2}}{8 \rho^{2} \pi^{3} \hbar^{7} v_{s}^{10}} \int [N_{a} \bar{p}_{0}(\delta_{2}) [\bar{p}_{0}(\delta_{1}) + 1] - N_{b} \bar{p}_{0}(\delta_{1}) [\bar{p}_{0}(\delta_{2}) + 1]] \delta_{1}^{0} d\delta_{1}$

W. Hübner and K. H. Bennemann, Phys. Rev. B 53, 3422 (1996)

History: theoretical achievements summary

- a. Bleaching (<10 fsec)
- b. Dephasing (10 fsec)
- c. Population dynamics (40-80 fsec)
- d. Electron-phonon coupling (<1 psec)
- e. Spin-lattice relaxation (48 psec)

- 1. History: theoretical achievements in spin dynamics
- 2. Introduction: theoretical and background aspects
- 3. Clusters with two magnetic centers
- 4. Clusters with three magnetic centers: magnetic logic
- 5. Role of bridging atoms
- 6. Conclusions

Which materials?

Why molecular magnets: motivation

- Ferromagnets → fast dynamics but no selective control possible (many broad bands i.e. no addressability of excited states)
- Antiferromagnets \rightarrow narrow bands \rightarrow good addressability
- Molecular magnets \rightarrow few discrete levels \rightarrow even better addressability
- AF and molecular magnets allow coherent control
 → active spin control → functionalization (applications)

Which materials?

Molecular magnets: three different experimental environments

ligand-stabilized complexes (fluid phase/pellets)

- (+) conventional wet chemistry
- (+) exist already
- (-) far from application devices
- •Gas phase of bare clusters (nozzle expansion)
- (+) few atomes
- (+) larger active-center/total-atoms ratio
- (+) charged particles \rightarrow control through mass-selection
- (-) far from application devices
- •Clusters on surfaces
- (+) close to application devices
- (-) exploit of additional features needed for selectivity
 - (resonance selection/magnetic field gradient)
- (-) bottom-up preparation: good but not excellent structures, e.g. on (111) surfaces) magnetically fair

Logic operations: the need for speed shortest *≠* fastest

time minimization (brachistochrone)

- Two optical transitions faster than one magnetic transition
- Best results with
 - slightly tilted linearly polarized light σ_0
 - transition matrix elements almost equal
 - intermediate excited state consisting 50% of $|\uparrow\uparrow\rangle$ and 50 % of $|\downarrow\downarrow\rangle$

From one to more centers

How many centers?

Concept

spin-orbit coupling AND laser \rightarrow spin dynamics AND functionalization ! **in silico**: time minimization (< 1 psec) propagation process $|A\rangle \xrightarrow{\hbar\omega} |B\rangle$

the spins of the states can have **different** •magnitude \rightarrow demagnetization •orientation \rightarrow spin flip •localization \rightarrow spin transfer

Hamiltonian

$$\hat{H}^{(0)} = -\frac{1}{2} \sum_{i=1}^{N_{el}} \nabla^2 - \sum_{i=1}^{N_{el}} \sum_{a=1}^{N_{at}} \frac{Z_a}{|\mathbf{R}_a - \mathbf{r}_i|} + \sum_{i=1}^{N_{el}} \sum_{j=1}^{N_{el}} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{a=1}^{N_{at}} \sum_{b=1}^{N_{at}} \frac{Z_a Z_b}{|\mathbf{R}_a - \mathbf{R}_b|}$$
Electronic correlations

$$\hat{H}^{(1)} = + \sum_{i=1}^{N_{el}} \frac{Z_a^{eff}}{2c^2 R_i^3} \mathbf{L} \cdot \tilde{\mathbf{S}} + \sum_{i=1}^{N_{el}} \mu_L \mathbf{L} \cdot \mathbf{B}_{stat} + \sum_{i=1}^{N_{el}} \mu_S \tilde{\mathbf{S}} \cdot \mathbf{B}_{stat} + \sum_{i=1}^{N_{el}} \sum_{\mathbf{q}} \lambda_a^{\mathbf{q}} \langle \mathbf{q} \rangle$$
SOC Static B-field phonons

$$\hat{H}^{(2)} = \mathbf{p}^{(0+1)} \cdot \mathbf{A}_{\mathsf{laser}}(t) + \tilde{\mathbf{S}} \cdot \mathbf{B}_{\mathsf{laser}}(t)$$

laser

NiO: semiclassical approach

 $\langle \mathbf{P}(t) \rangle$

x and y polarization shifted \rightarrow circularly polarized light

TD frequency analysis: semiclassical approach TD-FT

$$\widetilde{\mathbf{P}}(\omega,t) = \int_{-\infty}^{+\infty} \mathbf{P}(t')g(t-t')e^{i\omega t}dt'$$

Stokes vector

NiO: semiclassical approach TD-FT

circular polarization

- Material absorbs or emits helicity as needed
- book keeping not possible
- alternative means of distinguishing necessary

$$\widetilde{\mathbf{P}}(\omega,t) = \int_{-\infty}^{+\infty} \mathbf{P}(t')g(t-t')e^{i\omega t}dt'$$

G. Lefkidis, G. P. Zhang, and W. Hübner, Phys. Rev. Lett. 103, 217401 (2009)

TD frequency analysis: semiclassical approach TD-FT

Linear polarization

• strong dynamical Kerr effect

• pump = probe

- No cw limit
- nonequilibrium

G. Lefkidis, G. P. Zhang, and W. Hübner, Phys. Rev. Lett. 103, 217401 (2009)

- 1. History: theoretical achievements in spin dynamics
- 2. Introduction: theoretical and background aspects

3. Clusters with two magnetic centers

- 4. Clusters with three magnetic centers: magnetic logic
- 5. Role of bridging atoms
- 6. Conclusions

Two-magnetic-center nanostructures

- Magnetic ground state
- Neutral & Charged
- Realistic systems
- Singlet & Triplet
- SAC-CI results (Lanl2dz)

Two centers: local spin flip on Fe in FeNa₂Ni

[•] Genetic algorithm

T. Hartenstein, G. Lefkidis, W. Hübner, G. P. Zhang, and Y. Bai, J. Appl. Phys. **105**, 07D305 (2009)

Two centers: local spin flip on Co in FeNa₃Co

Two centers: local spin flip on Ni in NiNa₄Ni

(compare: J. Kasparian, B. Krämer, J. P. Dewitz, S. Vajda, P. Rairoux, B. Vezin, V. Boutou, T. Leisner, W. Hübner, J. P. Wolf, L. Wöste, and K. H. Bennemann, PRL **78**, 2952 (1997))

T. Hartenstein, G. Lefkidis, W. Hübner, G. P. Zhang, and Y. Bai, J. Appl. Phys. **105**, 07D305 (2009)

CO frequency calculation

Cluster	State	Bond length (Å)	Frequency (cm ⁻¹)
[CoMg₂Ni-CO]⁺	1	1.1561	2080
	3	1.1550	2100
	5	1.1467	2264
[Co-Ni-CO]⁺	1	1.1532	2149
	3	1.1545	2363
	5	1.1518	2160
[Ni-Co-CO]⁺	1	1.1518	2252
	3	1.1509	2257
	5	1.1514	2208

Two centers: local flip and transfer in [CoNi-Co]⁺

- States with spin localization (Mulliken)
- Both flip and transfer possible (but not simultaneously)
- IR Spectrum of CO as marker of the magnetic state (phonon-magnon coupling)

C. Li, T. Hartenstein, G. Lefkidis and W. Hübner, Phys. Rev. B 79, 180413(R) (2009)

Synthesized structure: [Ni^{II}₂(L-N₄Me₂)(emb)]

octahedral Ni: high spin (S=1) vs. square planar Ni: low spin (S=0)

G. Lefkidis, M. Blug, H. Kelm, C. Li, G. Pal, H.-J. Krüger, and W. Hübner, J. Phys. Chem. A 115, 1774 (2011)

Levels and vibrational spectrum: $[Ni^{II}_{2}(L-N_{4}Me_{2})(emb)]$

- first indications give bond-length results with < 5% error
- vibrational spectrum, deviaton < 10 %
- electronic spectrum, coincidence of main peaks in UV-Vis

G. Lefkidis, M. Blug, H. Kelm, C. Li, G. Pal, H.-J. Krüger, and W. Hübner, J. Phys. Chem. A 115, 1774 (2011)

Vibrational spectrum and spin flip $[Ni_{2}^{\parallel}(L-N_{4}Me_{2})(emb)]$

Spin flip on octahedral Ni

- Good agreement theory experiment (bond lengths, UV-Vis spectrum)
- Spin-flip scenario on an existing substance

G. Lefkidis, M. Blug, H. Kelm, C. Li, G. Pal, H.-J. Krüger, and W. Hübner, J. Phys. Chem. A 115, 1774 (2011)

- 1. History: theoretical achievements in spin dynamics
- 2. Introduction: theoretical and background aspects
- 3. Clusters with two magnetic centers
- 4. Clusters with three magnetic centers: magnetic logic
- 5. Role of bridging atoms
- 6. Conclusions

Systems: Ni₃Na₂

- local flip
- transfer

Systems: Ni₃Na₂

Success !

Systems: Ni₃Na₂ : possible mechanisms

Nevertheless transfer more difficult

Systems: Ni₃Na₂ : gates

AND gate				
input 1	input 2	output		
spin	\mathbf{B} -field	spin+position		
$1 (edge^{\uparrow})$	$1 \ (\theta = 0^{\circ})$	$1 \text{ (middle}\uparrow)$		
$0 \;(\text{edge}\downarrow)$	$1 \ (\theta = 0^{\circ})$	$0 \;(\mathrm{middle}{\downarrow})$		
$1 \; (edge\uparrow)$	0 ($\theta = 78^{\circ}$ and $\phi = 96^{\circ}$)	$0 \;(\mathrm{edge}\!\!\uparrow)$		
$0 (edge\downarrow)$	0 ($\theta = 78^{\circ}$ and $\phi = 96^{\circ}$)	$0 \;(\mathrm{edge}{\downarrow})$		

OR gate				
input 1	input 2	output		
spin	\mathbf{B} -field	spin+position		
$0 (\text{edge}\uparrow)$	$0 \ (\theta = 0^{\circ})$	$0 \;(\mathrm{middle}\uparrow)$		
$1 \; (edge\downarrow)$	$0 \ (\theta = 0^{\circ})$	$1 \text{ (middle}\downarrow)$		
$0 \;(\mathrm{edge}\uparrow)$	1 ($\theta = 78^{\circ}$ and $\phi = 96^{\circ}$)	$1 \; (edge^{\uparrow})$		
$1 \;(\text{edge}\downarrow)$	1 ($\theta = 78^{\circ}$ and $\phi = 96^{\circ}$)	$1 \; (edge\downarrow)$		

XOR gate				
input 1	input 2	output		
spin	\mathbf{B} -field	spin		
$1 (\text{edge}\uparrow)$	1 ($\theta = 78^{\circ}$ and $\phi = 96^{\circ}$)	$0 \text{ (middle}\downarrow)$		
$0 \;(\text{edge}\downarrow)$	1 ($\theta = 78^{\circ} \text{ and } \phi = 96^{\circ}$)	$1 \pmod{1}$		
$1 \; (edge^{\uparrow})$	$0 \ (\theta = 0^{\circ})$	$1 \text{ (middle}\uparrow)$		
$0 (edge\downarrow)$	$0 (\theta = 0^{\circ})$	$0 \text{ (middle} \downarrow)$		

W. Hübner, S. Kersten, and G. Lefkidis PRB 79, 184431 (2009)

- 1. History: theoretical achievements in spin dynamics
- 2. Introduction: theoretical and background aspects
- 3. Clusters with two magnetic centers
- 4. Clusters with three magnetic centers: magnetic logic

5. Role of bridging atoms

6. Conclusions

Two centers: O-bridged structures

- Spin-density redistribution
- Spin maximum relocalization
- Fe (easiest) > Co (moderate) > Ni (hardest)

Two centers: Mg-bridged structures

- Spin-density redistribution
- Spin maximum relocalization
- Fe (easiest) > Co (moderate) > Ni (hardest)

Two centers: O- and Mg-bridged structures

- Spin-flip facilitated
- Lower energy of laser pulse (~1 eV instead of 2-3 eV)

Two centers: O- and Mg-bridged structures

- Spin-flip facilitated
- Lower energy of laser pulse (~1 eV instead of 2-3 eV)
- Transfer with low intensity (0.115 Js⁻¹m⁻², per molecule)
- Spin transfer also possible
- First time tilt and transfer simultaneously

Summary

- Spin dynamics theoretically covered from femto- to subnanoseconds
- Ultrafast laser-induced active spin manipulation in magnetic nanoclusters
- Encoding of magnetic state in vibration of chromophore
- Logic functionalization (AND, OR gates)
- Rules-of-thumb for spin manipulation
 - Fe (easiest) > Co (moderate) > Ni (hardest)
 - O and Mg can reduce and relocate maximum of spin density
 - Spin flip easy on linear structures, but not spin transfer
 - Mg and O as bridging atoms increase the efficiency of spin transfer
 - Possibility of coherent control (different laser pulses lead to different results)