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1. A (brief) review of spin glasses
2. Slow dynamics, aging phenomena
3. An illustration from a simple model

My sources - Binder and Young Rev. Mod. Phys. 58,801, 1986
Spin glasses and random fields, edited by Young A. P., Vol. 12 (World Scientific, Singapore,
1998)



Spin glasses - a (very) brief overview

Noble metal doped with a few % of magnetic ions: 
Cu-Mn, Au-Fe (Cannella and Mydosh (1972))
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Long range RKKY interaction
Ruderman, Kittel, Yasuya,Yosida

And disorder leads to random 
magnetic exchange.
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CuMn with 1% Mn (Mulder et al 1981) 

Thermodynamic singularity but no long range order below Tf
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Curie’s law Only ferromagnet correlations
here, otherwise this sums to zero

Singular spin freezing in AF or freezing spin glass



Spin glass phase diagram

Low temperature annealing 
removes disorder

EuS -ferromagnet
1st, 2nd & 3r N
interactions

Disordered phase 
characterized by 
frustrated plaquettes



Frustration, degeneracy and disorder:

Or ?

Ising antiferromagnet
on triangle, coupling Jij=J

Or ?

Frustrated square

Ferro Jij=-J

Antiferro Jij=J

Degenerate microscopic elements

H = JijSi Sj
ij
!

! = 6

! = 8



  In geomtrically frustrated systems the degeneracy can propagate
and become macroscopic. For example the Ising triangular
antiferromagnet, G Wannier, Phys. Rev. 79, 357, 1950.

Subset of ground states-fix two sublattices, +, - each site on the 
third sublattice, O, can be + or – for the same energy.

=> Exponential number of states-extensive entropy

Ω=2(N/3) 
=> S°=R/3 log(2)=0.23
=> exact S=0.3383 R



Disorder lifts local degneracy:
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Antiferromagnetic
triangle
J1>J2>J3
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Fitting lowest energy elements together in
disordered systems is complex - closed loops
re-frustrate system at larger length scale:

⇒Degneracy, 
⇒metastability, 
⇒energy barriers 
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J1>J2>J3> J4> J5

Or ?……..

Collective, 
disordered spin
configuration
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Spin glass phase transition 

This collective “best compromise” could lead to a finite
temperature phase transiton to “broken symmetry” state

Order parameter 

Define also overlap between 
best compromises

The famous “rough Free Energy” landscape G([q]) 
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Ferromagnet G(m)

m

G(q)

q

Spin Glass
Single axis of 
multidimensional space 

How many absolute minima - 2 ? O(N) ?



Position of minimum could evolve chaotically in temperature

Binder and Young
Rev. Mod. Phys. 58,801



Models and solutions: The Edwards Anderson models
(S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975)
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P(Jij ) = p! (Jij " J0 ) + (1" p)! (Jij + J0 )

or

Random nearest neighbour interactions on (hyper)-cubic lattice

Disorder leads to complex physics - even mean field theory 
(Sherrington-Kirkpatrick model) is a “tour de force”!



Problem is that the quenched disorder is averaged over
In free energy, not the partition function =>

G(N ,T , J0 ,! ) = "kBT P([Jij ])log(Z[Jij ])D(Jij )#

Parisi’s replica trick: Log(Z ) = Lim n! 0 1
n
(Zn "1)

Take α=1,2,3…..n “replicas” of disorder.
Average over Zn.
Take n=>0, at the same time as n becomes a 
continuous variable. 

Create a “disorder dimension”, Si
! i=1,N  α=1,n



Parisi’s solution of the MFEA model (SK) 
(Parisi, G., 1980a, J. Phys. A 13, 1101.) gives the spin glass transition 
as a “symmetry breaking” to one of Ω collectively disordered 
ground states

 log(!) ! N
" log(2), 0 < " < 1

Plus a hierarchy of metastable states 

Non-extensive entropy!



For many “pure” states, application of a field does not
break symmetry into a single ground state. Almeida
Thouless line of phase transitions in FINITE field

Spin glass transition
along this line.

There has followed, a whole generation of intense debate
concerning the reality in three dimensions 



For Ising systems, in three dimensions, the Fisher/Huse 
school propose the“droplet picture” 
(Fisher, D. S., and D. Huse, 1986, Phys. Rev. Lett. 56, 1601.)
-here the hirarchy of metastable states develops into 
only two symmetry related equilibrium states below TC.

Clear distinction between these pictures comes in response to
field. For droplets, field breaks symmetry in favour of one pure 
state - no phase transition.

TT

BB

TC

Parisi Droplet



For continuous spins the debate raged over the existence of a 
phase transition in 3D. Now it looks as if there is one, driven 
by spins (Young) or effective chiral degrees of freedom 
(Kawamura)
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However, as spin glass - is glassy! One NEVER observes 
equilibrium behaviour at low temperature!



Example - this IS NOT an equilibrium kink! As ω =>0 
the peak temperature moves to the left

! = 1000 "1 Hz

Glassy dynamics - evolution on macroscopic time scales!



Experimental Almeida -Thouless line - time dependent! 
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Salamon and Tholence (1983)

Reducing ω, 
Increasing t

And for ω=0 ??



In spin glasses the non-equilibrium behaviour at Tg and below
results in the response time depending on the preparation
time.

Slow dynamics: aging phenomena

Aging protocol - cool in field to T<Tg. Leave to age for 
Waiting time tw. Switch off field.

t

h

!tw t = 0

M (tw ,t)

M fc



Vincent et al « Spin glasses and Random Fields, Ed. A.P. Young, 1998-Field cooled M, cut after
time tw

AgMn spin glass - relaxation depends on waiting time



Two-time dependence reduced to a single
scaling variable- λ=t/tw.



M(tw,t)
M=f(λ/tw

µ)

Kagomé based spin glass
Wills et al, PRB 62

(H2O)Fe3 (SO4 )(OH )6



Imaginary part of AC susceptibility, fixed tw
Applied field at frequencies ω= 0.01, 0.03, 0.1,1 Hz



This aging phenomenon where the characteristic time 
depends on the sample preparation is generic to all glassy 
systems time- strain response to applied stress in PVC
-last plot  is the scaled data.

L. Struik, « Physical ageing in amorphous polymers and other materials »,  Elsevier, 1978



Colloidal glass: Bellon et al, Europhys. Lett. , 51, 551, 2002.
Voltage noise spectrum S(tw,ω) in a lyaponite (clay) gell is a
function of waiting/preparation time tw. Scaling data by tw gives
collapse onto a master curve



Fluctuation dissipation theorem:

R(ri ,rj ,t,t ') ~
!Si (t)
!hj (t ')

Define the response function:

(for equilibrium we assume translational invariance in space and time)

And correlation function: C(ri ! rj ,t ! t ') =< S(ri ,t)S(rj ,t ') >

FDT states R(r,t,t ') = 1
T
!C(r,t " t ')

!t '

So that C(r) =< S(r)S(0) >= T R(r,t,t ')
!"
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Comments: !(r,t) = R(r,t ')
" t

0

# dt ' !(r," ) = !(r,t)
0

#

$ exp(%i"t)dt

!(" ) = ! '(" ) + i! ''(" ) where ! ''(" )

the energy dissipated when a perturbation is h(t) = h0 cos(!t)
is related to

added to the system.

In equilibrium, measuring response tells you about fluctuations
(fluctuations are very difficult to measure!)
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Magnetic response of a disordered system 



This universal behaviour invites study of model systems

Coarsening-spinodal decomposition in an Ising ferromagnet-
quench from high to low temperature in zero field

Competition between two equivalent minima with spin up
and spin down. Domains on characteristic (temperature
independent) length scale l(t)~t1/z,   z=2.
L.Berthier, J-L. Barrat, J. Kurchan,EPJB, 11, 635, 1999

TC

T

h Quench at t=-tw.
Snapshot at t=0



Successive config’s for
increasing  tw, T=0.1J

Scaling in terms of t/tw

C(t,t ') = 1
N

Si
i
! (t)Si (t ')

One site, two time correlation 
funciton



C(t,tw) relaxes to an
equilibrium value on a short
time scale and relaxes to zero
on times t ~tw

For short times correlations are
within a single domain C(t,tw)~m2 .

For longer times correlations are
between different, randomly
orientated domains, C=> 0



where X(t,t’) is an arbitrary function, which one could 
interpret as an “effective temperature” Teff=X/T

R(r,t,t ') = X(t,t ')
T

!C(r,t,t ')
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Loss of equilibrium shows up in the FDT. One can write 
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Teff is the slope of a parametric plot χ vs C
(CuKu plot after Cugliandolo-Kurchan)



For aging ferro-magnet (analytic mean field) at temperature T 

1
T

1
Teff

Teff = 0

Curves for different
t and tw

t/tw scaling



For aging mean field spin glass at temperature T 

1
T

1
Teff

0<Teff < T



X is related to the overlap of a 
spin with itself in “space-time”.

In same domain X=1. 

Between two domains X 
gives probability that overlap
Franz, Mézard, ParisiPRL, 81, 1758, 1998.

 
qab = < SaSb > < m2

For coarsening ferromagnet, X=0 => Teff=0

For coarsening spin glass with complex structure
, <0X<1 => 0<Teff<T



And for experiment ? Fluctuations and
response in CdCr1.7In0.3S4 spin glass
D. Hérisson and M. Ocio, Phys. Rev.Lett. 88, 257202 (2002)

1
Teff

1
T

Qualitatively very like a MF spin glass with complex structure



Simple coarsening explains a lot but not everything:

Rejuvenation-after a second quench to a lower (or higher)
temperature, the ageing procedure restarts from zero-
Vincent et al Spin glasses and random fields



Memory effects: after a second quench to T2, the system returns to 
T1 and remembers where it left off…..
Vincent et al 

43.07.1 SInCdCr



Jonason et al Phys. Rev. Lett. 81, 1998

43.07.1 SInCdCr



simple coarsening can not explain rejuvenation 
and memory effects.

Domain length scale l (t) is decoupled from the equilibrium 
correlation length ξeq. On changing T, 
thermal fluctuations of the bulk
equilibriate on a microscopic 
time scale =>No rejuvenation

Domains continue to grow at new
 temperature T
=>No memory

Ising 2D, T<TC. ξeq is microscopic
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Proposition: quench to a critical point-domain size and 
correlation length are locked together, ξ(t)=l (t)
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Godreche and Luck J. Phys. A, 33, 9141,  2000

Here all length scales < ξ contribute to observable quantities.



Ising Model at criticality 1,1 ±== ! SS i
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If we could do aging along a line of critical points all
length scales would fall out of equilibrium when T
Changes, L. Berthier, P. Holdsworth, Europhys. Lett, 58, 35, (2002).

Surfing on a critical line

*********** T

h
T1 !1"1

T2!2"2 Fractal structure changes so
domain a must change on all
length scales



There is such a system:
The 2D-XY model
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***********
TKT

T

h

Spin wave 

Two types of excitations, spin wave = small rotation by angle
dθ, and topological defects => vortices

Vortex 

Critical phenomena
below TKT

Unbinding of
Vortices at TKT

d f = 2 !
kBT
4" J  

H !
Jq2a2
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Normal mode with
wave vector q



Fractal structure:
2D-XY model at
T/J = 0.7, N
=512*512
Projection of θ onto
direction of <m>



Ageing in the 2D-XY models
L. Berthier, P. Holdsworth, M. Sellitto J. Phys. A, 34, 1805, 2001

From T=0 to T=0.3J increasing tw =>

From T= infinity to T=0.3J



Aging. At t=0 the system in equilibrium at Ti < TKT. 
Is quenched to T1 From Langevin dynamics

Each mode has characteristic time scale τ~1/(Tq2a2). For fixed time
All modes on length scales 1/q~l (t) < a t1/2 are equilibriated,  
scales > l (t) are our of equilibrium. Equilibrium amplitude~T



Rejuvenation At time t1 make a further quench to T2 <T1. 

t
t1 t2 

ALL length scales
are put out of equilibrium. 
The clock is set to 
zero and ageing 
restarts-rejuvenation.



At t2 quench back up to T1 

At t2 ageing restarts from q=0-once equilibrium length
reaches l (t2) active length scale jumps to l (t1)-memory

Memory



Compare with
Experimental data
with CdCr 1.7In 0.3S4

Activity on many scales
other than domain 
length is the key
to rejuvenation and
memory effects!



CONCLUSION

Aging phenomena could come from
Growth of domains with internal structure.

This is the case for 2D-XY model and it provides
the correct combination of time and length scales to

describe the experiments-Fact!

What ever the true scenario, disorder is clearly
needed to put the non-equilibrium phenomena

within the experimental time window.

ESM Targoviste, August 2011 


