

Large Angle Precessional Magnetization Dynamics

under Field and Current Excitations

Ursula EBELS

ESM Targoviste 22/08 – 02/09 2011

ursula.ebels@cea.fr

Time Scale

Magnetization Dynamics

ESM Targoviste 22/08 - 02/09 2011

Precessional Magnetization Dynamics

$$\frac{d\mathbf{L}}{dt} = \mathbf{L} \times \mathbf{G} \quad = -\gamma \mathbf{L} \wedge \mathbf{G}$$

ESM Targoviste 22/08 - 02/09 2011

<u>Precessional</u> Magnetization Dynamics

Outline

0 Introduction

I Conservative dynamics

II Non conservative dynamics

III Precessional reversal under transverse field pulses

IV Domain wall motion under field

V Introduction to spin transfer torque

VI Spin torque induced precession

VII (Precessional) Reversal under spin torque

ESM Targoviste 22/08 – 02/09 2011

I Conservative Dynamics - Conservation M spintec $d\mathbf{M}$ $\dot{\mathbf{H}} = -\gamma \mathbf{M} \times \mathbf{H}_{eff}$ dt Precession 1) Conservation of M Motion of m on unit sphere $\frac{d|\mathbf{M}|^2}{dt} = 2\mathbf{M} \cdot \frac{d|\mathbf{M}|}{dt} = 2\mathbf{M} \cdot \left(\mathbf{M} \times \vec{H}_{eff}\right) = 0$ \Rightarrow $|\mathbf{M}| = const.$ $\mathbf{m} = \frac{\mathbf{M}}{M_s} = \begin{pmatrix} m_x \\ m_y \\ m \end{pmatrix} \Longrightarrow \begin{bmatrix} m_x^2 + m_y^2 + m_z^2 = 1 \\ m \end{bmatrix}$ ESM Targoviste 22/08 - 02/09 2011 10 ursula.ebels@cea.fr

I Conservative Dynamics - Conservation [M]

$$\frac{d\mathbf{M}}{dt} = -\gamma \mathbf{M} \times \mathbf{H}_{eff}$$
Precession

$$\mathbf{m} = \frac{\mathbf{M}}{M_s} \begin{pmatrix} m_x \\ m_y \\ m_z \end{pmatrix} = \begin{pmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{pmatrix}$$
Motion of m on unit sphere

$$\frac{\mathbf{Z}}{\mathbf{M}} = \frac{\mathbf{M}}{\mathbf{M}} \begin{pmatrix} m_x \\ m_y \\ m_z \end{pmatrix} = \begin{pmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{pmatrix}$$
Two possible descriptions
1) Cartesian coordinates (x,y,z) or
2) Spherical coordinates (θ, φ)
Only two degrees of freedom

11

I Conservative Dynamics - Conservation E

$$\frac{d\mathbf{M}}{dt} = -\gamma \mathbf{M} \times \mathbf{H}_{eff} \qquad \mathbf{H}_{eff} = -\frac{\partial E}{\partial \mathbf{M}}$$
Precession

2) Conservation of energy

I Conservative Dynamics - General Solutions

The Precession equation corresponds to a Nonlinear Dynamical System

I Conservative Dynamics -Thin Film Solutions

I Conservative Dynamics – Equilibrium States

Equilibrium points of a dynamical system

$$\frac{d\mathbf{X}}{dt} = 0$$

187

Equilibrium points of Precession Term

$$(i)\frac{\partial \mathbf{M}}{\partial t} = 0 \Longrightarrow \mathbf{M} \times \mathbf{H}_{eff} = 0$$

$$(ii)\frac{\partial E}{\partial \mathbf{M}} = 0 \iff \frac{\partial E}{\partial \theta} = 0 \qquad \wedge \qquad \frac{\partial E}{\partial \varphi} = 0$$

Solutions of precession term: Minima on energy surface

I Conservative Dynamics - Energy Surface

I Conservative Dynamics - Energy Surface

I Conservative Dynamics - General Solutions

Equilibrium points of a dynamical system

$$\frac{d\mathbf{X}}{dt} = 0$$

18 7

Equilibrium points of Precession Term

$$(i)\frac{\partial \mathbf{M}}{\partial t} = 0 \Longrightarrow \mathbf{M} \times \mathbf{H}_{eff} = 0$$
$$(ii)\frac{\partial E}{\partial \mathbf{M}} = 0 \iff \frac{\partial E}{\partial \theta} = 0 \qquad \wedge \qquad \frac{\partial E}{\partial \varphi} = 0$$

Solutions of precession term: Minima on energy surface

Dynamic orbits of precession equation

Due to energy conservation and conservation of norm $E = K_u \left[1 - m_x^2 \right] - M_s H_{bx} m_x - M_s H_{by} m_y + 2\pi M_s^2 m_z^2$ $1 = m_x^2 + m_y^2 + m_z^2$

2 equations and 3 unknowns: parametrize e.g. m_x and $m_y = f(m_z)$

ESM Targoviste 22/08 – 02/09 2011

I Conservative Dynamics - Trajectories

Calculation of Trajectories

$$E = K_{u} \left[1 - m_{x}^{2} \right] - M_{s} H_{b} m_{x} + 2\pi M_{s}^{2} m_{z}^{2}$$
$$1 = m_{x}^{2} + m_{y}^{2} + m_{z}^{2}$$

Initial energy E_{o} , given e.g. by $\varphi_{o}=0$ and θ_{o} $E_{o}(\varphi_{o}, \theta_{o}) = E_{o}(m_{xo}, m_{yo}, m_{zo}) = const$

Uniaxial thin film $H_{\rm b}$ along easy axis

$$E = \frac{M_{s}H_{u}}{2} (1 - m_{x}^{2}) - M_{s}H_{b}m_{x} + \frac{M_{s}H_{d}}{2}m_{z}^{2} = E_{o} = const$$

$$\Rightarrow m_{x} = -\frac{H_{b}}{H_{u}} \pm \sqrt{\left(\frac{H_{b}}{H_{u}}\right)^{2} + \frac{H_{d}}{H_{u}}m_{z}^{2} - \frac{2E_{o}}{H_{u}M_{s}} + 1} = m_{x}(m_{z})$$

$$\Rightarrow m_{y} = \pm \sqrt{1 - m_{x}^{2} - m_{z}^{2}} = m_{y}(m_{z})$$

ESM Targoviste 22/08 - 02/09 2011

I Conservative Dynamics - Trajectories

Initial condition:

- Any point along the trajectory, since the orbits are uniquely defined (they do not cross)
- Choose for instance $\theta = \theta_{max}$ or $\phi = \phi_{max} \rightarrow E_o$
- Or choose $E_{o} \rightarrow \theta_{o}$ or ϕ_{o}
- With increasing energy the amplitudes $\theta_{\text{o}},\,\phi_{\text{o}}$ increase

I Conservative Dynamics - Energies

ESM Targoviste 22/08 - 02/09 2011

ursula.ebels@cea.fr

I Conservative Dynamics - Non-Linear Dynamics				
$\frac{d\mathbf{M}}{dt} = -\gamma (\mathbf{M} \times \mathbf{H}_{eff}) + \frac{\alpha}{Ms} \mathbf{M} \times \frac{d\mathbf{M}}{dt}$ Precession Damping				
	m	dE/dt	Static	Dynamic
Conservative Precession Dynamics	1	0 2 1	stable foci saddle	Closed orbits around foci Given by intial condition IPP or OPP for thin films
Non-conservative LLG				
ESM Targoviste 22/08 – 02/09 2011			urs	sula.ebels@cea.fr 26

Outline

0 Introduction

I Conservative dynamics

II Non conservative dynamics

III Precessional reversal under transverse field pulses

IV Domain wall motion under field

V Introduction to spin transfer torque

VI Spin torque induced precession

VII (Precessional) Reversal under spin torque

ESM Targoviste 22/08 – 02/09 2011

II Non Conservative Dynamics - Introduction

Example : Sphere with reversed field

II Non Conservative Dynamics - LLG

Landau-Lifshitz-Gilbert Equation (LLG)

$$\frac{d\mathbf{M}}{dt} = -\gamma \left(\mathbf{M} \times \mathbf{H}_{eff} \right) + \frac{\alpha}{M_s} \left(\mathbf{M} \times \frac{d\mathbf{M}}{dt} \right)$$
Precession Damping

Damping

Damping

α

 α = damping constant typically 0.01 for metals

Time scales Precession : order or below ns Damping : few ns

ESM Targoviste 22/08 - 02/09 2011

Equ

II Non Conservative Dynamics – Energy Dissipation

Energy change

$$\frac{dE}{dt} = \frac{dE}{d\mathbf{M}} \frac{d\mathbf{M}}{dt} = -\mathbf{H}_{eff} \frac{d\mathbf{M}}{dt}$$
$$\frac{dE}{dt} = \gamma \mathbf{H}_{eff} (\mathbf{M} \times \mathbf{H}_{eff}) - \frac{\alpha}{M_s} \mathbf{H}_{eff} \left(\mathbf{M} \times \frac{d\mathbf{M}}{dt}\right) = -\frac{\gamma \alpha}{M_s} \left(\frac{d\mathbf{M}}{dt}\right)^2 < 0$$
$$\frac{dE}{dt} < 0 \qquad \text{since } \alpha > 0$$

• Damping decreases the energy

II Non Conservative Dynamics - Equilibria

II Non Conservative Dynamics - Stability of Equilibria Landau-Lifshitz-Gilbert Equation (LLG) $\frac{\mathbf{A}}{t} = -\gamma \left(\mathbf{M} \times \mathbf{H}_{eff} \right) + \frac{\alpha}{M_{eff}} \left(\mathbf{M} \times \frac{d\mathbf{M}}{dt} \right)$ $d\mathbf{M}$ Μ dtDamping **Precession** Stability: Linearization of LLG around equilibrium points M_o $\mathbf{M} = \mathbf{M}_{o} + \partial \mathbf{M}$ $\mathbf{H} = \mathbf{M}_{o} + \partial \mathbf{M}$ $\mathbf{H}_{eff}(\mathbf{M}) = \mathbf{H}_{eff}(\mathbf{M}_{o} + \delta \mathbf{M})$ $\mathbf{H}_{eff}(\mathbf{M}) = \mathbf{H}_{eff}(\mathbf{M}_{o}) + \mathbf{h}_{eff}(\delta \mathbf{M})$ $\begin{cases} \Rightarrow \frac{d\delta \mathbf{M}}{dt} = \underline{\mathbf{A}}\delta \mathbf{M} \\ \underline{\mathbf{A}} \text{ does not depend on } \delta \mathbf{M}, \\ \underline{\mathbf{A}} \text{ only on } \mathbf{M}_{o} \& \mathbf{H}_{eff}(\mathbf{M}_{o}) \end{cases}$ Solution $\delta \mathbf{M} = \delta \mathbf{M}_o e^{\lambda t} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t}$ $\Gamma < 0$ stable point $\lambda = \Gamma + i\omega_o$ ESM Targoviste 22/08 - 02/09 2011 ursula.ebels@cea.fr 35

II Non Conservative Dynamics – Stability of Equilibria 🚾

II Non Conservative Dynamics – Stability of Equilibria

$$\frac{d\delta \mathbf{M}}{dt} = \underline{\mathbf{A}} \delta \mathbf{M} \qquad \text{Solution} \qquad \delta \mathbf{M} = \delta \mathbf{M}_o e^{\lambda t} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \lambda = \Gamma + i\omega_o \qquad \lambda = \Gamma + i\omega_o \qquad \Gamma < 0 \text{ stable point} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \mathbf{M} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t$$

Can be lengthy depending on the configuration. General solution in sphercial coordinates

Well known solution from Ferromagnetic Resonance FMR

$$\omega_o^2 = \gamma \left(\frac{E_{\theta\theta} E_{\varphi\phi} - E_{\theta\phi}^2}{M_s^2 \sin^2 \theta} \right) \qquad \Gamma = \frac{\gamma \alpha}{2} \left(\frac{E_{\theta\theta}}{M_s} + \frac{E_{\varphi\phi}}{M_s^2 \sin^2 \theta} \right) \qquad \Gamma = \frac{\Delta \omega}{2}$$

 $\begin{array}{ll} E_{\theta\theta}, E_{\varphi\varphi}, E_{\theta\varphi} \end{array} \begin{array}{ll} \text{Second derivatives of energy} \\ \text{to be evaluated at equilibrium } \textit{\textbf{M}}_{o} \Leftrightarrow \theta_{o}, \ \varphi_{o} \end{array} \end{array}$

ESM Targoviste 22/08 – 02/09 2011

II Non Conservative Dynamics - Summary

$\frac{d\mathbf{M}}{dt}$	$-\gamma(\mathbf{M} \times \mathbf{H}_{eff}) + \frac{\alpha}{Ms} \mathbf{M} \times \frac{d\mathbf{M}}{dt}$ Precession Damping					
	m	dE/dt	Static	Dynamic		
Conservative Precession Dynamics	1	0	2 stable foci 1 saddle	Closed orbits around foci Given by intial condition Non-linear frequency shift		
Non-conservative LLG	1	<0	 1 stable focus 1 unstable focus 1 saddle 	Damped oscillations around stable focus FMR frequencies		
ESM Targoviste 22/08 – 02/09 2011			ursula	.ebels@cea.fr 39		

Outline

0 Introduction

I Conservative dynamics

II Non conservative dynamics

III Precessional reversal under transverse field pulses

IV Domain wall motion under field

V Introduction to spin transfer torque

VI Spin torque induced precession

VII (Precessional) Reversal under spin torque

ESM Targoviste 22/08 – 02/09 2011

III Precessional Reversal - Introduction

Can one switch between zero field easy axis minima using a hard axis field?

Use of hard axis field pulse of 100 ps – 1 ns Field sweep faster than relaxation Precessional reversal

ursula.ebels@cea.fr

III Precessional Reversal - Introduction

To understand the trajectory → need to look at solutions of precession term with hard axis field

ESM Targoviste 22/08 - 02/09 2011

Spintec

III Precessional Reversal – Hard Axis Field Step

At t_o

M is in energy minimum $\phi=0^{\circ}$, $\theta=90^{\circ}$

• Initial energy $E_{o}(\phi=0^{\circ}, \theta=90^{\circ})=0$

M starts to precess around new energy minimum on IPP orbit
 Trajectory is determined by initial conditions *E*_o(φ=0°, θ=90°)=0
 For small field step amplitude
 M precesses on IPP 1 orbit

III Precessional Reversal – Hard Axis Field Step

III Precessional Reversal - Hard Axis IPP Trajectories

III Precessional Reversal under hard axis pulse

III Precessional Reversal under hard axis pulse

Large pulse amplitude IPP 2 orbits

(i) Short pulse length τ

 \rightarrow **M** does not cross hard axis (M_x =0) before pulse terminates and returns into intial state

Keep in mind that damping will relax **M** into closest minimum after pulse termination

III Precessional Reversal under hard axis pulse

Large pulse amplitude IPP 2 orbits

(ii) Increasing pulse length τ \rightarrow M visits 2nd minimum and relaxes into reversed state after pulse termination

When $\tau = (2n+1) T_{prec}$: reversal When $\tau = 2n$ T_{prec} : non-reversal with T = precession period

By adjusting pulse length τ and height H_y M can be reversed!

Keep in mind that damping will relax **M** into closest minimum after pulse termination

III Precessional Reversal - Experiments

III Precessional Reversal - Experiments

III Precessional Reversal - Concept

III Precessional Reversal – Minimum Field

Initial energy,
$$H_y=0$$

 $E_o = E(m_x = 1)$

$$E_o = K_u \left[1 - m_x^2 \right] + 2\pi M_s^2 m_z^2 = 0$$

Energy at hard axis

$$E_{\text{max}} = E(\theta = 90^{\circ}, \varphi = 90^{\circ})$$

 $E_{\text{max}} = K_u - M_s H_y$

$$E_o = E_{\text{max}} \Longrightarrow H_{y \min} = \frac{H_u}{2}$$

ESM Targoviste 22/08 – 02/09 2011

III Precessional Reversal - Energies

III Precessional Reversal - Summary

- For a thin magnetic film, a fast rising field pulse applied along the hard axis can induce a precessional reversal
- For strong and fast enough field pulses, the magnetization follows a constant energy trajectory that goes around both energy minima
- When the pulse is turned off after 2n+1 precession cycles, M relaxes into the reversed minimum
- « Fast » means the energy gain from Zeeman has to be greater than energy loss due to damping during pulse application

ESM Targoviste 22/08 – 02/09 2011

Outline

0 Introduction

I Conservative dynamics (solutions of Precession term)

II Non conservative dynamics

III Precessional reversal under transverse field pulses

IV Domain wall motion under field

V Introduction to spin transfer torque

VI Spin torque induced precession

VII (Precessional) Reversal under spin torque

ESM Targoviste 22/08 – 02/09 2011

IV Domain wall Dynamics - Introduction

Wall motion under an applied field

• Wall displaces perpendicular to field

• Domain parallel to bias field increases in size, to minimize Zeemman energy

Time t_1

 $E = M_1 H V_1 - M_2 H V_2$

All changes of the magnetization state pass via a precessional motion of the magnetization

What is underlying process?

IV Domain wall Dynamics - Static Wall

IV Domain wall Dynamics – Dynamic Wall

- \bullet The larger the bias field \textit{H}_{b} , the larger the angle ϕ
- The larger ϕ , the stronger h_d and in consequence the faster the « θ » rotation
- The faster the « θ » rotation, the faster the wall displaces
- For constant φ , constant wall velocity v

spintec

The fast θ rotation due to h_d provides a strong damping torque that counteracts the precession torque around H_b

ESM Targoviste 22/08 – 02/09 2011

ursula.ebels@cea.fr

$$\frac{d\mathbf{M}}{dt} = -\gamma \left(\mathbf{M} \times \mathbf{h}_{d}\right) + \frac{\alpha}{M_{s}} \left(\mathbf{M} \times \frac{d\mathbf{M}}{dt}\right)$$

φ remains constant

Upon field application, φ increases until damping torque due to θ rotation is strong enough to counterbalance φ rotation

IV Domain wall Dynamics -Wall Displacement spintec Maximum dipolar field when static rotation of $\phi = 45^\circ$ 1) Balance between precession and damping $\frac{\alpha}{M_s} \left(\mathbf{M} \times \frac{d\mathbf{M}}{dt} \right) = \frac{-\gamma \alpha}{M_s} \left(\mathbf{M} \times \left(\mathbf{M} \times \mathbf{h}_d \right) \right)$ $\gamma(\mathbf{M} \times \mathbf{h}_d)$ **h**_d, $\alpha h_d \cos \varphi = H_h$ $h_d = 4\pi M_s \sin \varphi$ $\gamma(\mathbf{M} \times \mathbf{H}_{h})$ $\frac{\alpha}{M_{s}} \left(\mathbf{M} \times \frac{d\mathbf{M}}{dt} \right)$ $\alpha 4\pi M_s \sin \varphi \cos \varphi = H_h$ Walker breakdown h H_w • Maximum damping torque at φ =45°. • For larger φ , precession torque from $\mathbf{H}_{\rm h}$ **Msin***\varphi* is no more compensated • Wall spin precess continously $H_{w} = \alpha 2\pi M_{s}$ H ESM Targoviste 22/08 - 02/09 2011 ursula.ebels@cea.fr 68

IV Domain wall Dynamics – Summary

The domain wall motion under applied field passes in two steps

 The applied field creates a torque that rotates the spins inside the domain wall (distortion of wall profile):
 « φ » rotation for a Bloch wall

- The resulting dipolar fields create a torque that rotate the wall spins into the direction of the reversed domain: « θ » rotation for a Bloch wall

- As a result the (distorted) domain wall profile displaces at constant velocity proportional to the applied field

- The initial « ϕ » rotation is at a constant angle due to the balance of damping torque and precession torque
- Above a certain bias field, this damping cannot balance the precession torque: Walker breakdown

Summary

$\frac{d\mathbf{M}}{dt} = -\gamma(\mathbf{M} \times \mathbf{H}_{eff}) + \frac{\alpha}{Ms} \mathbf{M} \times \frac{d\mathbf{M}}{dt}$ Precession Damping								
[m	dE/dt	Static	Dynamic				
Conservative Precession Dynamics	1	0	2 stable foci 1 saddle	Closed orbits around foci Given by intial condition Non-linear frequency shift				
Non-conservative LLG	1	<0	 1 stable focus 1 unstable focus 1 saddle 	Damped oscillations around stable focus FMR frequencies				
 Precessional reversal under fast hard axis field – along constant energy trajectory. Its a two step reversal Similarly, domain wall displaces under field due to large angle precession of wall spins. Two step reversal 								

ESM Targoviste 22/08 – 02/09 2011

ursula.ebels@cea.fr

71

III Precessional Reversal - Characteristics

- Minimum Pulse Ampliutde H_{ymin}
- Low probability of succesful switching at minimum H_v
- Low probability of succesful switching at transitions from R \Leftrightarrow NR
III Precessional Reversal under hard axis pulse

- First pulse switches **M** from initial \rightarrow reversed state
- Second pulse switches back from reversed \rightarrow initial state
- Switching back along same trajectory, but with M_z

ESM Targoviste 22/08 – 02/09 2011

III Precessional Reversal - Experiments

Repeated pulses induce repeated switching back and forth

III Precessional Reversal – Minimum Pulse Height

Low probability of succesful switching at minimum H_v

III Precessional Reversal – Transition $R \Leftrightarrow NR$

Low probability of succesful switching at transitions from $\mathsf{R} \Leftrightarrow \mathsf{NR}$

- Slow down of precession when crossing the hard axis
- Thermal fluctuations will have a strong effect on whether or not **M** reverses

III Precessional Reversal - Pulse Shape dependence Bauer et al PRB 61, 3410 (2000) **Transition Regime τ=1.4 ns** Y Y (Oe) Н 150 100 Х Х 50^{-1} **Initial state Reversed state** ▼ h_{pulse} Thin Film: $N_x << N_y << N_z$ α =0.008, M_s =860emu/cm³ ESM Targoviste 22/08 - 02/09 2011 78 ursula.ebels@cea.fr

ESM Targoviste 22/08 – 02/09 2011

I Conservative Dynamics - Preliminaries

Questions

- * What exactly determines the shape of the trajectory ?
- * Around what point does magnetization precess ?
- What is determines the amplitude of the trajecotry ?
- What happens when the applied field suddenly changes?

I Conservative Dynamics

Questions

- What exactly determines the shape of the trajectory Energy
- Around what point does magnetization precess Energy Minima + Maxima
- What is determines the amplitude of the trajecotry Intial conditions

I Conservative Dynamics - Preliminaries

***** What determines the shape of the trajecotry: Energy

I Conservative Dynamics - Preliminaries

***** Around what point does the magnetization precess?

Example Sphere with $N_x = N_v = N_z = 1/3$, $K_u = 0$ and applied field in X or Y direction

1) For a spherical system (isotropic) Precession around the field axis = effective field

2) For a non-spherical system (magnetic + shape anisotropy):

Precession around the effective field

spintec

I Conservative Dynamics - Trajectories

Field step along easy axis

- For a sudden change of the field, **m** follows a trajectories around the new equilibrium positions depending
- The initial condition for this new trajectory is the position at the time when the field has changed

I Conservative Dynamics - Summary

- The precession corresponds to a non-linear dynamical system
- It is characterized by the conservation of the norm of **m** and of its energy *E*(**m**)
- Its solutions are equilibria and periodic orbits
- The equilibria correspond to energy minima, maxima or saddlepoints
- The periodic orbits are constant energy trajectories
- For a uniaxial thin films there are two types of trajectories : IPP and OPP
- IPP is around the energy minimum and OPP around the energy maximum
- While the total energy is constant, the anisotropy, Zeemand and demagnetization energy oscillate
- The trajectories can be calculated analytically from the conservation of *E* and **m**
- The amplitude of the orbits is given by the initial condition (initial energy)

What happens when the applied field orientation suddenly changes?

Example Sphere

What happens when the applied field orientation suddenly changes?

Example Sphere

Spintec

I Conservative Dynamics - Trajectories

For completeness

Relation between initial energy and maximum excursion points of θ_o and ϕ_o

$$E_o(\varphi_o, \theta_o) = E_o(m_{xo}, m_{yo}, m_{zo}) = const$$

$$\cos\varphi_o = -\frac{H_b}{H_u} \pm \sqrt{\left(\frac{H_b}{H_u}\right)^2 - \frac{2E_o}{H_uM_s} + 1}$$

$$\sin \theta_o = -\frac{H_b}{H_u + H_d} \pm \sqrt{\left(\frac{H_b}{H_u + H_d}\right)^2 + 1 - \frac{2E_o}{M_s(H_u + H_d)}}$$

II Non Conservative Dynamics – Stability of Equilibria

$$\Delta = \left(\frac{tr(A)}{2}\right)^2 - 4\det(A)$$

ESM Targoviste 22/08 - 02/09 2011

II Non Conservative Dynamics - Summary

- The LLG equation corresponds to a non-linear dynamical system
- It is characterized by the conservation of the norm of **m** and dE(m)/dt < 0
- The equilibria correspond to energy minima, maxima or saddlepoints
- The stability of equilibria is obtained via linearization of LLG
- Only the energy minima are stable
- The orbits are spirals around the energy minimum
- Independent of the initial condition the system will end up in a (local) energy minumum

pintec

III Precessional Reversal - Hard Axis IPP Trajectories

Dynamic orbits for hard axis bias fields

Conservation of energy and of norm

$$E = K_{u} \left[1 - m_{x}^{2} \right] - M_{s} H_{by} m_{y} + 2\pi M_{s}^{2} m_{z}^{2}$$
$$1 = m_{x}^{2} + m_{y}^{2} + m_{z}^{2}$$

$$m_{x}^{2} = 1 - \frac{2E_{o}/M_{s}}{H_{u} + H_{d}} - \frac{2H_{b}}{H_{u} + H_{d}}m_{y} - \frac{H_{d}}{H_{u} + H_{d}}m_{y}^{2} \Rightarrow m_{x}(m_{y})$$

$$m_{z}^{2} = \frac{2E_{o}/M_{s}}{H_{u} + H_{d}} + \frac{2H_{b}}{H_{u} + H_{d}}m_{y} - \frac{H_{u}}{H_{u} + H_{d}}m_{y}^{2} \Rightarrow m_{z}(m_{y})$$

Special initial condition $\varphi=0^\circ$, $\theta=90^\circ$ ($m_x=1$) \rightarrow Initial energy $E_o(\varphi=0^\circ, \theta=90^\circ)=0$ $m_y \in \{0,1\}$

ESM Targoviste 22/08 – 02/09 2011

ursula.ebels@cea.fr

II Non Conservative Dynamics – Stability of Equilibria

Landau-Lifshitz-Gilbert Equation (LLG)

$$\frac{d\mathbf{M}}{dt} = -\gamma \left(\mathbf{M} \times \mathbf{H}_{eff} \right) + \frac{\alpha}{M_s} \left(\mathbf{M} \times \frac{d\mathbf{M}}{dt} \right)$$
Precession Damping

Stability: Linearization of LLG around equilibrium points M_o

$$\mathbf{M} = \mathbf{M}_{o} + \delta \mathbf{M}$$

$$\mathbf{H}_{eff}(\mathbf{M}) = \mathbf{H}_{eff}(\mathbf{M}_{o} + \delta \mathbf{M})$$

$$\mathbf{H}_{eff}(\mathbf{M}) = \mathbf{H}_{eff}(\mathbf{M}_{o}) + \mathbf{h}_{eff}(\delta \mathbf{M})$$

$$\begin{cases} \Rightarrow \frac{d\delta \mathbf{M}}{dt} = \underline{\mathbf{A}}\delta \mathbf{M}$$

$$\underline{\mathbf{A}} = \mathbf{A}\delta \mathbf{M}$$

$$\underline{\mathbf{A}} = \mathbf{A}\delta \mathbf{M}$$

$$\underline{\mathbf{A}} = \mathbf{A}\delta \mathbf{M}$$

II Non Conservative Dynamics – Stability of Equilibria

$$\frac{d\delta \mathbf{M}}{dt} = \underline{\mathbf{A}} \delta \mathbf{M} \qquad \textbf{Solution} \qquad \begin{aligned} \delta \mathbf{M} &= \delta \mathbf{M}_o e^{\lambda t} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \lambda &= \Gamma + i\omega_o \end{aligned}$$

$$det(\underline{\underline{A}} - \lambda \underline{\underline{I}}) = 0 \implies \lambda^{2} - tr(A)\lambda + det(A) = 0$$
$$\Rightarrow \lambda = \Gamma + i\omega_{o} \qquad \qquad \Gamma < 0 \text{ stable point}$$
$$\Gamma > 0 \text{ unstable point}$$
$$\Gamma = 0 \text{ periodic orbit}$$
$$\omega_{o} \text{ precession frequency}$$

ESM Targoviste 22/08 - 02/09 2011

ursula.ebels@cea.fr

II Non Conservative Dynamics - Stability of Equilibria

After perturbation the system either converges to or diverges from equilibrium state

ESM Targoviste 22/08 – 02/09 2011

ursula.ebels@cea.fr

II Non Conservative Dynamics - Equilibria

Spintec

II Non Conservative Dynamics - Equilibria

spintec

II Non Conservative Dynamics – Stability of Equilibria

$$\frac{d\delta \mathbf{M}}{dt} = \underline{\mathbf{A}} \delta \mathbf{M} \qquad \text{Solution} \qquad \delta \mathbf{M} = \delta \mathbf{M}_o e^{\lambda t} = \delta \mathbf{M}_o e^{\Gamma t} e^{i\omega_o t} \\ \lambda = \Gamma + i\omega_o \qquad \lambda = \Gamma + i\omega_o \qquad \Gamma < 0 \text{ stable point} \\ \Gamma > 0 \text{ unstable point} \end{cases}$$

Can be lengthy depending on the configuration. General solution in sphercial coordinates

Well known solution from Ferromagnetic Resonance FMR

$$\omega_o^2 = \gamma \left(\frac{E_{\theta\theta} E_{\varphi\phi} - E_{\theta\phi}^2}{M_s^2 \sin^2 \theta} \right) \qquad \Gamma = \frac{\gamma \alpha}{2} \left(\frac{E_{\theta\theta}}{M_s} + \frac{E_{\varphi\phi}}{M_s^2 \sin^2 \theta} \right) \qquad \Gamma = \frac{\Delta \omega}{2}$$

 $\begin{array}{ll} E_{\theta\theta}, E_{\varphi\varphi}, E_{\theta\varphi} \end{array} \begin{array}{ll} \text{Second derivatives of energy} \\ \text{to be evaluated at equilibrium } \textit{\textbf{M}}_{o} \Leftrightarrow \theta_{o}, \ \varphi_{o} \end{array} \end{array}$

ESM Targoviste 22/08 – 02/09 2011

II Non Conservative Dynamics - FMR

Example: uniaxial thin film, with in-plane easy axis bias field

$$\begin{split} H_{1} = H_{u} + H_{b} \\ H_{2} = H_{u} + H_{b} + H_{d} \\ \frac{\omega}{\gamma} = \sqrt{\left(H_{b} + H_{u}\right) \cdot \left(H_{u} + H_{b} + H_{d}\right)} \\ \text{Kittel Formula} \end{split}$$

Example: uniaxial thin film, with in-plane hard axis bias field

$$\begin{split} & H_1 = H_b - H_u \\ & H_2 = H_b + H_d \\ & \frac{\omega}{\gamma} = \sqrt{\left(H_b - H_u\right) \cdot \left(H_b + H_d\right)} \end{split}$$

II Non Conservative Dynamics - FMR

Example: thin film with bias field and uniaxial anisotropy out-of-plane

 $\begin{array}{l} H_1 = H_u + H_b - H_d \\ H_2 = H_u + H_b - H_d \end{array} \qquad \frac{\omega}{\gamma} = \left(H_u + H_b - H_d \right)$

ESM Targoviste 22/08 - 02/09 2011

ursula.ebels@cea.fr

