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Short review:  
• basic models describing the 

magnetic behaviour 
• connections between models





General problems
    Dimensionality of the system, d; 
Moments coupled: 

all space directions d=3
in a plane d=2
one direction d=1
polymer chain d=0

Phase transition:
Existence of a boundary at d=4, 
spatial dimensionality can be also continous, ε=4-d
   Number of magnetization components, n
Heisenberg model n=3
X-Y model n=2
Ising model n=1
Phase transitions:
n→∞ spherical model (Stanley, 1968)
n=-2 Gaussian model 
n   can be generalized as continous 
For d ≥ 4, for all n values, critical behaviour can be described by a 
model of molecular field approximation 



Comparison with experimental data 
magnetization versus temperature M=f(T)
magnetic susceptibility  χ=f(T)
behaviour in critical region
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Transition metals: 3d Fe,Co,Ni
Fe g= 2.05-2.09
Co g=2.18-2.23
Ni g=2.17-2.22

Moments due mainly to spin contribution 
For 3d metals and alloys

Moments at saturation µ=gS0,
Effective magnetic moments 

generally r=Sp/So>1
Rare-earths: 4f shell presence of spin and orbital 
contribution
Magnetic insulators: localized moments
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Localized moments: 
Heisenberg type Hamiltonian: exchange interactions

Jij exchange integral direct
n=3 system
Difficulty in exact computation of magnetic properties: many body 
problem 
Approximations
Ising model (Ising 1925) 
Exact results in unidemensional and some bidimensional lattices  

• Unidimensional
neglect the spin components ⊥ H

strong uniaxial anisotropy
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• Linear Ising lattice : not ferrromagnetic 

• Square bidimensional lattice, J1,J2

M=[1-(sh2k1sh2k2)-2]1/2 Onsager (1948)

Yang (1952)

• Tridimensional lattice: series development method
• Spherical Ising model (Berlin-Kac, 1951)

arbitrary values for spins but 

can be solved exactly in the presence of an external field

d≥4; critical exponents are independent of d and of the 
geometry of the system
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Molecular field models : 
Methods which analyse exactly the interactions in a small part of 
crystal, and the interactions with remaining part are described by 
an effective field, Hm , self consistently determined:

small portion →atom (molecular field approach Weiss (1907)

• Magnetic domains

• Molecular field: aligned magnetic moments 

   in the  domains
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Reverse reaction: corrections are time distributed: n 
correction after n-1 one 
Molecular field: 

act at the level of each particle 

Self consistency:
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T>TC  
MF: χ-1∝T in all temperature range

experimental around TC:
χ∝t-γ      γ=4/3

MF: θ=TC

experimental for Fe,Co,Ni
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Interactions between a finite number of spins +molecular 
field 
Oguchi method(1955); Constant coupling approximation 
(Kastelijn-Kranendonk, 1956); Bethe-Peierls-Weiss 
method (Weiss 1948)
Oguchi: 

pair of spins 

TjzizB0jiij )HS(SμgμSS2J +−−=0H HT → molecular field for 
z-1 neighbours  

TC≠θ θ/TC=1.05 (cubic lattice)
χ-1 nonlinear variation around TC



Spin Waves
Slater (1954): exact solution for Heisenberg 
Hamiltonian: all spins (except one) are paralelly aligned 
 

N → number of atoms 

Many spin deviations: additivity law ΔE(n)≅nΔE(1)
(non rigorous, corrections)

repulsion of spin deviations: atoms with S, no more 2S 
deviations

attraction: total exchange energy is lower  when two 
spin deviations are localized on neighbouring atoms
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• Semiclassical description of spin wave: Bloch (1930) (Heller-Kramers 
1934, Herring-Kittel 1951, Van Kranendonk-Van Vleck, 1958)

• Holstein-Primakoff folmalism (1940)
M=M(0)(1-AT3/2) T/TC≤0.3

• Renormalization of spin waves (M.Bloch, 1962)
Keffer-London: effective field proportional with mean magnetization of 
atoms in the first coordination sphere (1961)

replaced by an effective spin at T, proportional with the angle 
between two neighbouring spins

⇓

The system is equivalent, at a given temperature, with a system of 
independent spin wave, having excitation energy (renormalized energy) 
equal with the energy of spin wave in harmonical approximation, 
multiplied by a self consistent term which depends on temperature
The model describe the temperature dependence of the magnetization 
in higher T range  



Series development method (Opechowski, 1938, Brown, 1956)
The magnetic properties of the system described by Heisenberg 
hamiltonian, can be analysed around TC, by series development method 
in T-1
T>TC

χ∝(T-TC)-γ γ=4/3; For S=1/2     kBTC/J=1.8-1.9 (z=6)
            =2.70 (z=8)

Green function method (Bogolyubov-Tyablikov, 1959)
Bitemporal Green function for a ferromagnet (S=1/2). Temperature 
dependence of magnetization obtained by decoupling Green function 
equation. The analysis has been made in lowest decoupling order 
(random phase approximation) 

M=M(0)(aT3/2+bT5/2+cT7/2)
β=1/2; γ=2

Analysis in the second order of Green function decoupling (Callen, 1963)
kBTC/J values only little higher than those obtained by series 
development method.



Antisymmetric exchange interactions:

(Dzialoshinski 1958)

General form of bilinear spin-spin interaction 

Jαβ

Explain weak ferromagnetism in α-Fe2O3
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Indirect excahnge interactions through conduction 
electrons (RKKY) (Ruderman-Kittel, Kasuya, Yoshida (1954-1956))

4f shell: small spatial extension

La   Ce   Pr   Nd   Pm   Sm   Eu   Gd   Tb   Dy   Ho   Er   Tm   Yb  Lu 

4fo                                             4f7                                           4f14

3d dilute alloys in nonmagnetic host 

Hs-d(f)=JsS

H= Hs-d+Hcond.el+Hzz

First order perturbation theory

⇓

Uniform polarization of conduction electrons



Second order 
J(Rnm)∝J2F(x)

Oscillatory polarization: decrease as 
Example: Stearns 1972: Polarization of s and d 
itinerant 3d electrons: iron  T>TC

Θ=GF(x)
G=(gJ-1)2J(J+1) De Gennes factor

Rare earths F(x) are similar
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x
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Exchange interactions 4f-5d-3d:

R-M compounds

R=rare-earth

M=3d metal

M5d=M5d(0)+αG

G=(gJ-1)2J(J+1)

ni number of 3d atoms  in the first 
coordination shell, having Mi 
moment 
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Band models 
• non integer number of µB MFe=2.21 µB

MCo=1.73 µB
MNi=0.61 µB

• presence of 3d bands: widths 
of ≅1 eV
• difference between the number 
of spins determined from saturation 
magnetization and Curie constant 



Stoner model 
s,d electrons in band description 

ΔE==ΔEex+ΔEkin

Spontaneous splitting 3d band
Jefη(EF) ≥ 1

Stoner criterion for ferromagnetism 
Sc,Ti,V, 3d band large, strongly hybridized with (4s,4p) band→ small
density of sates at EF; Jeff close to that of free electron gas

⇓
no magnetic moments and magnetic order

Cr,Mn,Fe,Co,Ni: 3d band narrow (high density of states around EF) 
Jeff, more close to values in isolated atom 

⇓
magnetic moments and magnetic ordering 

Many models based on the band concept were developed 
ZrZn2 M(T)=M(0)[1-T2/TC2]



Hubbard model (Hubbard, 1963, 1964) 
Hamiltonian: a kinetic term allowing for tunneling (“hopping”) of 
particles between sites of the lattice and a potential term consisting 
of on site interaction
Particles: fermions (Hubbard original work)

    bosons (boson Hubbard model)
Good approximation: particles in periodic potential at low T (particles 
are in the lowest Bloch band), as long range interactions can be 
neglected.
Extended Hubbard model: interactions between particles on different 
sites are included.
Based: tight binding approximation, electrons occupy the standard 
orbitals of atoms and “hopping” between atoms.

J→∞, exact fundamental state
J=0, band description
 localized moments
       ratio   intermediate state

delocalized moments
Metal-Insulator transition 
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Models considering both band and localized features  
• Friedel (1962), Lederer-Blandin (1966)

Starting from  band model+features of Heisenberg model 

Local polarization (Jefη(EF)≥1)+ oscillatory exchange interactions

• Zener modified model (Herring) lattice of atoms having x and x+1 d 
electrons, respectively

The additional electron (Zener) is itinerant “hopping” from a lattice 
site to another

• Stearns model 

Indirect coupling of localized d electrons through d itinerant 
electrons. 95 % d electrons are in narrow band (localized) and 5 % of d 
electrons are itinerant (Fe).



Approximation based on ionic configurations
coexistence of different ionic configurations 3d9, 3d8, 3d7
there is a possibility for impurity to have another fundamental state of 
an excited configuration by virtual transition.

⇓

an effective coupling between impurity and conduction electrons 
In zones situated between stable configurations there are regions 

characterized by fluctuations between configurations
⇓

both localized and itinerant magnetic behaviour



Spin fluctuations:
Stoner model: itinerant electrons treated as a free electron gas; even 
the molecular field concept was introduced do not describe the 
properties of 3d metals at finite temperature 
Spin fluctuations: abandoned the concept of single particle excitation; 
introduced thermally induced collective excitations  

deviations (fluctuation) from their average
probability distribution of these fluctuations

The system is paramagnetic 

For some k value Jη(EF)=1→magnetic moments having a life time τ 
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Exchange enhanced 
paramagnet 
s=[1-Jη(EF)]-1
s-Stoner exchange 
enhancement factor 
s≅10



Self consistent theory of spin fluctuations
Wave number dependent susceptibility, χq, for a nearly 
ferromagnetic alloy has a large enhancement for small q values

Frequency of longitudinal spin fluctuations  ω* ∝     
τ-lifetime of LSF

Low temperature
(thermal fluctuations-transversal slow)
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Approximation for nonmagnetic state

 χ∝T2

χ(T)      as  T

η” > 0 (necessary condition, not sufficient)



High temperature
Average mean amplitude of LSF is temperature dependent 

Sloc       as T       up to T*          

          determined by charge neutrality condition 

The system behaves as having local moments for temperatures T > T* where the 
frequency of spin fluctuations
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χ∝T2

χ-1

χ-1∝T

TT*θ

θ<0

C-W type

Crossover between low T regime governed by spin 

fluctuations and high T classical regime



A system can be magnetic or nonmagnetic depending on the 
temperature (Schrieffer 1967)

Gaussian distribution of spin fluctuations (Yamada)



GdxY1-xCo4Si

Model: weak ferromagnetic behavior



Dilute magnetic alloys  

Small number of magnetic atoms (3d) in nonmagnetic metallic matrix

3d moments as Fe, dependent on metallic matrix (Clogston 1962) 



Friedel model: virtual bound state (level)
Resonance phenomena between d states
and k states of conduction electrons

⇓
Package of waves centered on impurity atom (virtual bound level)

prediction concerning the appearance of magnetic moment on impurity 
and experimental data



Wolff model:

Considers scattering of conduction electrons by the 
potential of impurity atom. 

The virtual level can be evidenced by a maximum in 

scattering section of the conduction electron.

When the virtual level is rather narrow and close to EF, the 

impurity develops an exchange potential which polarizes the 

electrons in their neighbor 



Anderson model:
Magnetic impurity,
Bands: ↑(full) ↓(empty)
s or s-p state of conduction band 
U d-d interaction
Vdk covalent mixing of conduction band 
with d states 

⇓
Decrease of the number of electrons with spin (↑) and increase of 
those with spin (↓) 

H=H0+Hsd
           H0=H0k+H0d+Hcor     Coulomb interaction between electrons with spin 
↑ and ↓

         nonperturbed states
electrons in conduction band
Density of mixing states, ηdσ has half width  Γ/2
For S=1/2
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Kondo model:

Anomalous temperature dependence of the electrical resistivity

⇓

Interaction between the localized magnetic impurities and the 
itinerant electrons.

Extended to lattice of magnetic 

impurities, the Kondo effect 

is belied to underlay the 

formation of heavy fermions 

in intermetallic compounds based 

particularly on rare-earth.



Schrieffer-Wolff (1966): Anderson Hamiltonian can be of  a similar 
form as the Kondo one, considering an antiferromagnetic  interaction 
J(k,k’) energy dependent



Spin glass, Mictomagnets:

Dilute alloy with random 
distribution of 3d atoms

Oscillatory polarization can 
direct the moments in different 
directions.

At low T, the moments are 
freezen in the direction 
corresponding to polarization 
(H=0)-spin glass



At higher concentration of 
magnetic atoms there are.

• random distributed 
magnetic atoms

• clusters of atoms

⇓

mictomagnetism

Difference in the zero field 
cooled and field cooled 
magnetization.

Insulators: magnetic atoms in 
glasses 

       perovskites



Dynamical Mean Field Theory (DMFT):
DMFT, a step to develop methods for describing electronic correlations. 
Depending on the strength of the electronic correlations, the non-
perturbative DMFT correctly yields:

• weakly correlated metal

• strongly correlated metal

• Mott insulator

DMFT+LDA allows a realistic calculation of materials having strong 
electronic correlations: 

transition metal oxides 

heavy fermion systems

Theory of everything: kinetic energy, lattice potential, Coulomb 
interactions between electrons



Many body problem        one site problem
Anderson model

Hybridization function plays the role of the mean field.
                                                                                    small      electron localized  
                                                    Hybridization    
                                                                                     large      electron move throughout crystal



Super exchange and double exchange 
mechanisms

Two ions separated by diamagnetic ions

Superexchange
⇓

between ions in same 
valence states

Double exchange
⇓

between ions in different 
valence states



Superexchange Interactions (Van-Vleck 1951)
Two ions T1,T2 separated by a diamagnetic ion (O2-)

Two p electrons of O2- occupy the same p orbital

T1, T2 have each one d electron 

p orbitals axis coincides with T1-T2 axis

⇓

singlet state (no magnetic coupling between T1 and T2

one p electron transferred as d1’: coupling between d and d1’ on T1 atom

the second p electron of O2- can couple with the d electron of T2 atom. 
Since of opposite spins of the two O2- electrons will appear an indirect 
exchange between T1 and T2 through this excited state.



Anderson: a more complex model
The resultant interaction is given as a sum of two 
competitive effects having opposite signs:

potential superexchange (Coulomb repulse energy 
between two magnetic ions) which lead to ferromagnetic 
coupling

kinetic superexchange (negative)



Double exchange mechanism (Zener 1951)

Mn eg orbitals are directly interacting with the O 2p orbitals: one 
Mn ion has more electron than other. 

If O gives up its spin-up electron to Mn4+, its vacant orbital can 
be filled by an electron from Mn3+

Electron has moved between the neighbouring metal ions, 
retaining its spin. 



Thank you very much for 
your attention
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