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Short review:
* basic models describing the
maghetic behaviour
* connections between models
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General problems
Dimensionality of the system, d;
Moments coupled: .,
all space directions  d=3 [z eri——
in a plane d=2 1 5
one direction d=1
polymer chain d=0
Phase transition:
Existence of a boundary at d=4,
spatial dimensionality can be also continous, e » =1~
Number of magnetization components, n -
Heisenberg model n=3 | o
X-Y model n=2
Ising model n=1
Phase transitions:
n - co spherical model (Stanley, 1968)
n=-2 Gaussian model
n can be generalized as continous

For d > 4, for all n values, critical behaviour can be described by a
model of molecular field approximation
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Comparison with experimental data
magnetization versus femperature M=f(T)
magnetic susceptibility x=f(T)

behaviour in critical region
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Transition metals: 3d Fe,Co Ni

Fe g= 2.05-2.09

Co g=2.18-2.23

Ni g=2.17-2.22
Moments due mainly to spin contribution
For 3d metals and alloys

Moments at saturation p=gS0,

Effective magnetic moments ueffzg\/Sp(SpJ“l)
generally r=Sp/So>1

Rare-earths: 4f shell presence of spin and orbital
contribution

Magnetic insulators: localized moments



Localized moments:

Heisenberg type Hamiltonian: exchange interactions

- z Jijasj Jij exchange integral direct
n=3 system

Difficulty in exact computation of magnetic properties: many body
problem

Approximations
Ising model/ (Ising 1925)
Exact results in unidemensional and some bidimensional lattices

_2‘]2 1z JZ

* Unidimensional
neglect the spin components [0 H
strong uniaxial anisotropy



Linear Ising lattice : not ferrromagnetic

X D%exp(ZJ/kBT)

Square bidimensional lattice, J1,J2

M=[1-(sh2klsh2k2)-2]1/2 Onsager (1948)

k=L, Yand{1952)
kT 7 kT

Tridimensional lattice: series development method
Spherical Ising model (Berlin-Kac, 1951)

arbitrary values for spins but S2- ot

can be solved exactly in the presence of an external field

d=4; critical exponents are independent of d and of the
geometry of the system



Molecular field models :

Methods which analyse exactly the interactions in a small part of
crystal, and the interactions with remaining part are described by
an effective field, Hm , self consistently determined:

small portion - atom (molecular field approach Weiss (1907)

* Magnetic domains :
* Molecular field: aligned magnetic moments . 1 e
in the domains 47%)\_
Hm=NiiM ,

Total field HT=H+Hm; M=xOH - M=xO(H+NiiM), - oH
1-NiX o



Self consistency:
M= oH+ N oM=) oHENGX o (X oHt Nk oM )=
=) oH(L Ny o ) (NFX 6 M=
=X oHL1+ (N o )t (N X o)2+ (Nqx o)3+ G5

Reverse reaction: corrections are time distributed:
correction after n-1 one

Molecular field:
act at the level of each particle
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Interactions between a finite number of spins +molecular
field

Oguchi method(1955); Constant coupling approximation
(Kastelijn-Kranendonk, 1956); Bethe-Peierls-Weiss
method (Weiss 1948)

Oguchi:
pair of spins

I, = -2T.SS - gu.Hs(S, + S )H; HT - molecular field for
s : z-1 neighbours

TC26 0/TC=1.05 (cubic lattice)

X-1 nonlinear variation around TC



Spin Waves

Slater (1954): exact solution for Heisenberg
Hamiltonian: all spins (except one) are paralelly aligned

5=y S 5=NS,  5:Ns-1
N - number of atoms

—guBBz S.-27Y S5

neigh.

Many spin deviations: additivity law AE(n)ChAE(1)
(non rigorous, corrections)

repulsion of spin deviations: atoms with S, ho more 25
deviations

attraction: total exchange energy is lower when two
spin deviations are localized on neighbouring atoms



* Semiclassical description of spin wave: Bloch (1930) (Heller-Kramers
1934, Herring-Kittel 1951, Van Kranendonk-Van Vleck, 1958)

* Holstein-Primakoff folmalism (1940)
M=M(0)(1-AT3/2) T/TC<0.3
* Renormalization of spin waves (M.Bloch, 1962)

Keffer-London: effective field proportional with mean magnetization of
atoms in the first coordination sphere (1961)

replaced by an effective spin at T, proportional with the angle
between two neighbouring spins

[]

The system is equivalent, at a given temperature, with a system of
independent spin wave, having excitation energy (renormalized energy)
equal with the energy of spin wave in harmonical approximation,
multiplied by a self consistent term which depends on temperature

The model describe the temperature dependence of the magnetization
in higher T range



(Opechowski, 1938, Brown, 1956)

The magnetic properties of the system described by Heisenberg
hamiltonian, can be analysed around TC, by series development method
in T-1

>TC
xO(T-TC)-yy=4/3; For S=1/2 kBTC/J=1.8-1.9 (z=6)
=2.70 (z=8)
(Bogolyubov-Tyablikov, 1959)

Bitemporal Green function for a ferromagnet (S=1/2). Temperature
dependence of magnetization obtained by decoupling Green function
equation. The analysis has been made in lowest decoupling order
(random phase approximation)

M=M(0)(aT3/2+bTH/2+cT7/2)
B=1/2; y=2
Analysis in the second order of Green function decoupling (Callen, 1963)

kBTC/J values only little higher than those obtained by series
development method.



Antisymmetric exchange interactions:
(Dzialoshinski 1958)

General form of bilinear spin-spin interaction

X = zb IpSeSp a.p=x,y,z

JGB<JaS,5 JaSp:Jp,sa

J;‘b JS‘f-JE‘a
fxi? - d‘j(sixsj) d’j - _dji

MFe MFe

I = J;SS;



Indirect excahnge interactions through conduction
electrons (RKKY) (Ruderman-Kittel, Kasuya, Yoshida (1954-1956))

4f shell: small spatial extension
La Ce Pr Nd Pm Sm Eu 6d Tb Dy Ho Er Tm Yb Lu
4fo 417 4114

3d dilute alloys in nonmagnetic host
I(s-d(f)=JsS

I(= IHs-d+Icond.el+IH(zz

First order perturbation theory

[]
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Stoner model
s,d electrons in band description
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Spontaneous splitting 3d band
Jefn(EF) =1
Stoner criterion for ferromagnetism
5c¢,Ti,V, 3d band large, strongly hybridized with (4s,4p) band —» small
density of sates at EF; Jeff close to that of free electron gas
[]
nho magnetic moments and magnetic order
Cr,Mn,Fe,Co Ni: 3d band narrow (high density of states around EF)
Jeff, more close to values in isolated atom
[]
magnhetic moments and magnetic ordering
Many models based on the band concept were developed
ZrZn2 M(T)=M(0)[1-T2/TC2]
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Hubbard model (Hubbard, 1963, 1964)

Hamiltonian: a kinetic term allowing for tunneling (“hopping”) of
particles between sites of the lattice and a potential ferm consisting
of on site interaction

Particles: fermions (Hubbard original work)
bosons (boson Hubbard model)

Good approximation: particles in periodic potential at low T (particles
are in the lowest Bloch band), as long range interactions can be
neglected.

Extended Hubbard model: interactions between particles on different
sites are included.

Based: tight_hinding approximation, electrons occupy the standard
orbitals o% aé;gsTaﬁdlﬁh‘%% iNg"-between atoms.

(o} 10

J - o, exact fundamental state

C{:O, band deseription
% Io@ moments

ratio { intermediate state
delocalized moments



Models considering both band and localized features
* Friedel (1962), Lederer-Blandin (1966)
Starting from band model+features of Heisenberg model
Local polarization (Jefn(EF)=1)+ oscillatory exchange interactions

* Zener modified model (Herring) lattice of atoms having x and x+1 d
electrons, respectively

The additional electron (Zener) is itinerant “hopping” from a lattice
site to another

* Stearns model

Indirect coupling of localized d electrons through d itinerant
electrons. 95 % d electrons are in narrow band (localized) and 5 % of d
electrons are itinerant (Fe).



Approximation based on ionic configurations
coexistence of different ionic configurations 3d9, 3d8, 3d7

there is a possibility for impurity fo have another fundamental state of
an excited configuration by virtual transition.

[]
an effective coupling between impurity and conduction electrons

In zones situated between stable configurations there are regions
characterized by fluctuations between configurations

[
both localized and itinerant magnetic behaviour



Spin fluctuations:
Stoner model: itinerant electrons treated as a free electron gas; even
the molecular field concept was introduced do not describe the
properties of 3d metals at finite temperature
Spin fluctuations: abandoned the concept of single particle excitation;
introduced thermally induced collective excitations

deviations (fluctuation) from their average
_probability distrigution of these fluctuations
1- X‘?‘Tefz 1- Jefnk(EF)

HoHz

Xk

The system isxeoygmagne‘ric

For some k value Jn(EF)=1- magnetic moments having a life time 1

al nd(EF)
1- Jnd(EF)
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Wave number dependent susceptibility, Xq, for a nearly
ferromagnetic alloy has a large enhancement for small q values
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Frequency of longitudinal spin fluctuations o™ [ 1
t-lifetime of LSF :

Low temperature
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Average mean amplitude of LSF is temperature dependent

(S..)= 3k, TY ¥,

Sloc asT  uptoA* / (Sloc)

§  determined by charge neutrality condition

loc

The system behaves as having local moments for temperatures T > T* where the
frequency of spin fluctuations

e KT

n S







Gaussian distribution of spin fluctuations (Yamada)

¥ =a; —'-:a+§'£a_;,sz '+§9-%a58‘ +?a755 + 5.

where the mean square value of the fluctuating magnetization, §, is given by:
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Electron concentrations




Friedel model: virtual bound state (level)
Resonance phenomena between d states
and k states of conduction electrons
[]
Package of waves centered on impurity atom (virtual bound level)

prediction concerning the appearance of magnetic moment on impurity
and experimental data
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Wolff model:

Considers scattering of conduction electrons by the
potential of impurity atom.
The virtual level can be evidenced by a maximum in

scattering section of the conduction electron.

When the virtual level is rather narrow and close to EF, the

impurity develops an exchange potential which polarizes the

electrons in their neighbor



Anderson model:
Magnetic impurity,
Bands: 1 (full) | (empty)
s or s-p state of conduction band
U d-d interaction
Vdk covalent mixing of conduction band
with d states
L

Decrease of the number of electrons with spin (1) and increase of
those with spin (1)

H=30+Hsd
30z HOk+IFOW®Icor Coulomb interaction between electrons with spin

niEn =—

()

1 and !
nonperturbed states
electrons in conduction band
Density of mixing states, ndo has half width /2

For S=1/2
Sﬂlgl——l H B
2n nxy(1-x)g U

y=U/(T /2);



Q01 */ at Mn

- 0003 *% at Mn




y the impurity
YwF, the Fermi v iencing only a mi
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Dynamical Mean Field Theory (DMFT):

DMFT, a step to develop methods for describing electronic correlations.
Depending on the strength of the electronic correlations, the non-
perturbative DMFT correctly yields:

. weakly correlated metal
. strongly correlated metal
. Mott insulator

DMFT+LDA allows a redlistic calculation of materials having strong
electronic correlations:

transition metal oxides
heavy fermion systems

Theory of everything: kinetic energy, lattice potential, Coulomb
interactions between electrons



Dynamical mean-field theory (DMFT) of correlated-electron solids replaces the full lattice of atoms and electrons
with a single impurity atom imagined to exist in a bath of electrons. The approximation captures the dynamics of electrons
on a central atom (in orange) as it fluctuates among different atomic configurations, shown here as snapshots in time. In the
simplest case of an s orbital occupying an atom, fluctuations could vary among [0), |1}, | 1), or [11), which refer to an unoc-
cupied state, a state with a single electron of spin-up, one with spin-down, and a doubly occupied state with opposite spins.
In this illustration of one possible sequence involving two transitions, an atom in an empty state absorbs an electron from the

surrounding reservoir in each transition. The hybridization V, is the quantum mechanical amplitude that specifies how likely
a state flips between two different configurations.

Many body problem = one site problem
Anderson model
Hybridization function plays the role of the mean field.
small = electron localized
Hybridization
Y N

large —» electron move throughout crystal




Two ions separated by diamagnetic ions

Superexchange Double exchange
[] []
between ions in same between ions in different

valence states valence states



Superexchange Interactions (Van-Vieck 1951)
Two ions T1,T2 separated by a diamagnetic ion (O2-)
Two p electrons of O2- occupy the same p orbital
T1, T2 have each one d electron
p orbitals axis coincides with T1-T2 axis
[]
singlet state (no magnetic coupling between T1 and T2
one p electron transferred as d1": coupling between d and d1' on T1 atom

the second p electron of O2- can couple with the d electron of T2 atom.

Since of opposite spins of the two O2- electrons will appear an indirect
eXChC(nge bepron T1 Aand T2 +thraiinh +hiec ovritoAd etnto
2+ i

2+ § it 4 AL} T2ty
e o 2




Anderson. a more complex model
The resultant interaction is given as a sum of two
competitive effects having opposite signs:

potential superexchange (Coulomb repulse energy
between two magnetic ions) which lead to ferromagnetic
coupling

kinetic superexchange (negative)



Mn eg orbitals are directly interacting with the O 2p orbitals: one
Mn ion has more electron than other.

eg eg

Mn3* (d%) Mn#+ (d®)

If O gives up its spin-up electron to Mn4+, its vacant orbital can
be filled by an electron from Mn3+

Electron has moved between the neighbouring metal ions,
retaining its spin.



Thank you very much for
your attention
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