

Magnetism is	s fully quantum mechanical
	$\mathcal{H} = -2\mathcal{J}\mathbf{S}_1 \cdot \mathbf{S}_2$
Magnetism i	s fully relativistic
	$\vec{E} = -\frac{\partial \vec{A}}{\partial t} - \vec{\nabla}\phi \qquad \vec{B} = \vec{\nabla} \times \vec{A}$ $F^{\mu\nu} = \begin{bmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{bmatrix}$

$\uparrow \downarrow \uparrow \downarrow$,
11111111111111111111111111111111111111	
$\uparrow ferromagnet$	
<u> </u>	
11 THE TEACH TEACH	

Energy terms:						
• Kinetic energy $\qquad rac{\hbar^2}{2m} rac{\pi^2}{L^2} = { m eV}$						
+ Coulomb energy $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$						
Size of atom given by balance of these two terms						
 Spin-orbit ~ meV Magnetocrystalline anisotropy ~ μeV 						
	12					

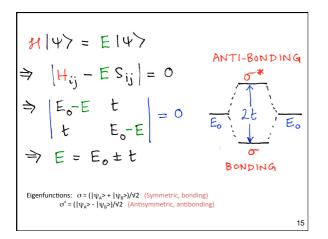
Molecular orbitals:
$$H_2$$

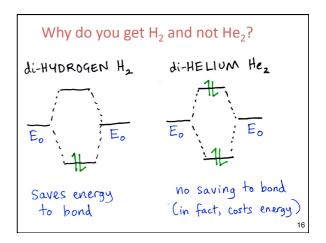
(A) (B)
 $I\Psi \gamma = c_A |\Psi_A \gamma + c_B |\Psi_B \gamma$
 $H = -\frac{\hbar^2}{2m} \nabla^2 + V_A + V_B$
 $H |\Psi \gamma = E |\Psi \gamma$
 $\hat{L} energy$

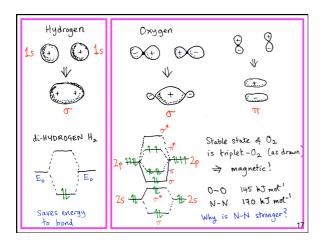
$$E_{o} = \langle \Psi_{A} | \mathcal{H} | \Psi_{A} \rangle$$

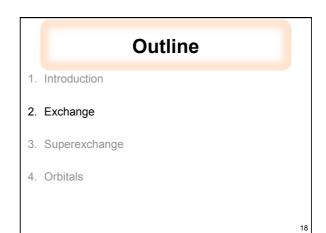
$$E = \langle \Psi_{A} | \mathcal{H} | \Psi_{B} \rangle$$

$$1 \text{ resonance integral}$$


$$[\text{transfer or bopping integral]}$$


$$S_{ij} = \langle \Psi_{i} | \Psi_{i} \rangle \text{ overlap integrals}$$


$$= \delta_{ij} \quad (\text{Hückel approx})$$


$$\mathcal{H} | \Psi_{j} \rangle = E | \Psi_{j} \rangle$$

$$14$$

20

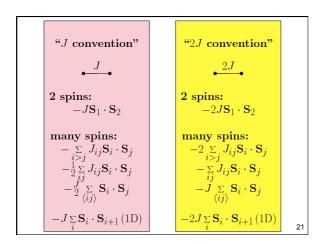
22

Consider 2 electrons: their spins can combine to form either an antisymmetric singlet state χ_S (S = 0) or a symmetric triplet state χ_T (S = 1). The wave function, which is a product of spatial and spin terms, must be antisymmetric overall. Hence:

 $\begin{array}{rcl} \Psi_{S} &=& \left[\psi_{1}({\bf r}_{1})\psi_{2}({\bf r}_{2})+\psi_{1}({\bf r}_{2})\psi_{2}({\bf r}_{1})\right]\chi_{S} \\ \Psi_{T} &=& \left[\psi_{1}({\bf r}_{1})\psi_{2}({\bf r}_{2})-\psi_{1}({\bf r}_{2})\psi_{2}({\bf r}_{1})\right]\chi_{T} \end{array}$ The energies of the two possible states are

$$E_S = \int \Psi_S^* \hat{H} \Psi_S \, d\mathbf{r}_1 \, d\mathbf{r}_2$$
$$E_T = \int \Psi_T^* \hat{H} \Psi_T \, d\mathbf{r}_1 \, d\mathbf{r}_2$$

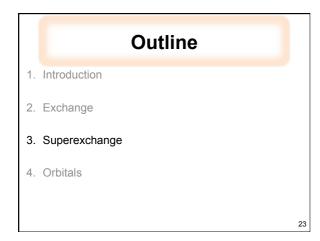
so that the difference between the two energies is

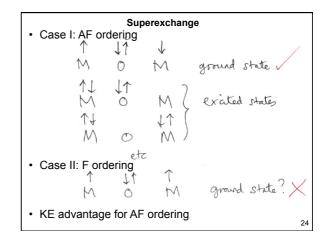

$$E_S - E_T = 4 \int \psi_1^*(\mathbf{r}_1) \psi_2^*(\mathbf{r}_2) \hat{H} \psi_1(\mathbf{r}_2) \psi_2(\mathbf{r}_1) d\mathbf{r}_1 d\mathbf{r}_2.$$

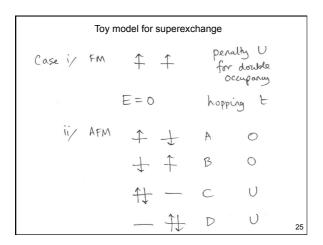
The energy is then $E = \frac{1}{4}(E_S + 3E_T) - (E_S - E_T)\mathbf{S_1} \cdot \mathbf{S_2}$. The spin-dependent term can be written $H^{\text{spin}} = -J\mathbf{S_1} \cdot \mathbf{S_2}$. 19

• Interaction between pair of spins motivates the general form of the Heisenberg model:

$$H = -\sum_{ij} J_{ij} \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}}$$

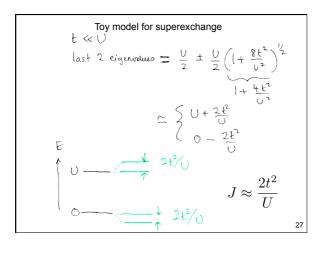

• The quantity J_{ij} gives the exchange energy between two spins. Be very careful on the factor of two between different conventions of the definition of *J*.

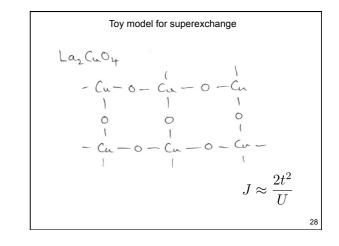


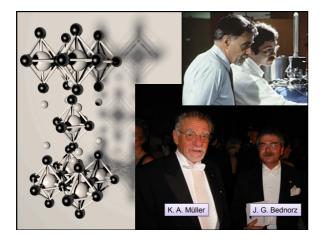

• Interaction between pair of spins motivates the general form of the Heisenberg model:

$$H = -\sum_{ij} J_{ij} \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}}$$

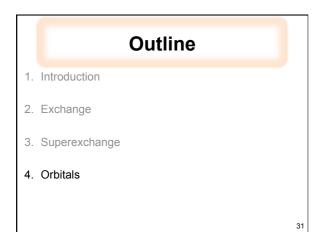
- Direct exchange: important in many metals such as Fe, Co and Ni
- Superexchange: exchange interaction mediated by oxygen. This leads to a very long exchange path. Important in many magnetic oxides, e.g. MnO, La₂CuO₄.

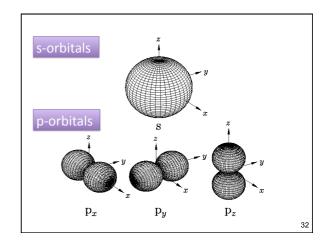


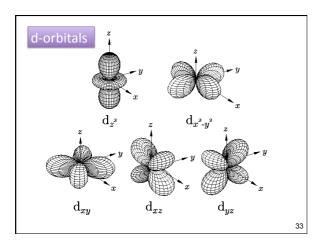


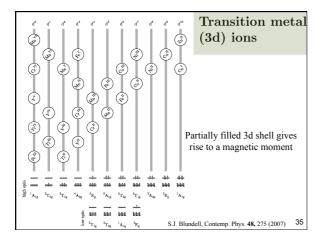


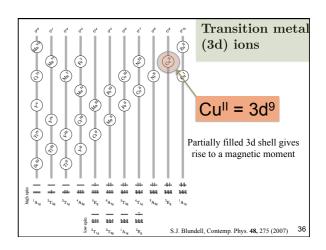
Toy model for superexchange

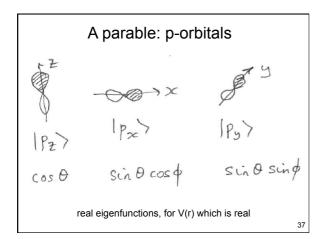

$$\begin{aligned}
\mathcal{H} &= \begin{bmatrix} 0 & 0 & -t & -t \\ 0 & 0 & -t & -t \\ -t & -t & 0 & 0 \\ -t & -t & 0 & 0 \end{bmatrix} & \begin{pmatrix} g_{uess} & -2t^2 \\ 0 & -t & -t \\ -t & -t & 0 & 0 \end{bmatrix} \\
det (\mathcal{H} - E) &= 0 \\
\begin{vmatrix} -E & 0 & -t & -t \\ 0 & -E & -t & -t \\ -t & -t & 0 & 0 -E \end{vmatrix} = 0 \\
\begin{aligned}
-E & (u - E) \left[-E^2 + UE + 2t^2 \right] = 0 \\
= & E = 0, U, \quad \underbrace{U \pm \sqrt{U^2 + 8t^2}}_{2} \end{aligned}$$

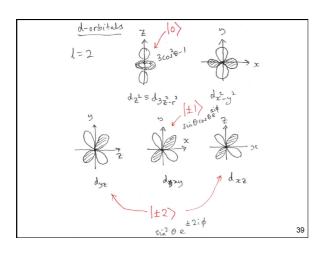


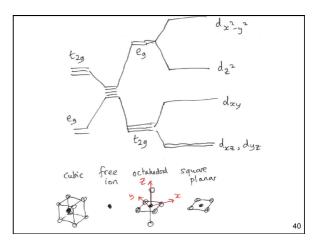


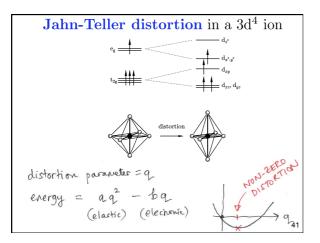


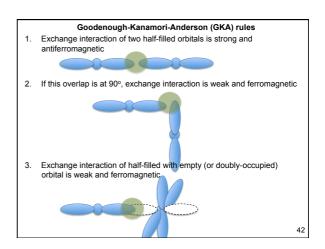


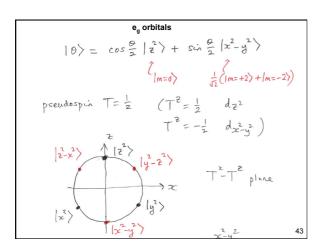


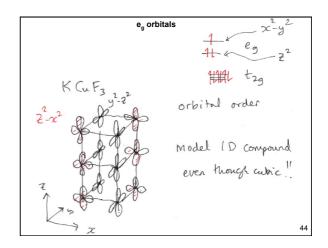

1	2											3	4	5	6	7	0
							н										He
Li	Be		BCNOFN									Ne					
Na	Mg		AI SI P S CI Ar														
К	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ТΙ	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
Alkali metals Halogens Transition metals Noble gases																	

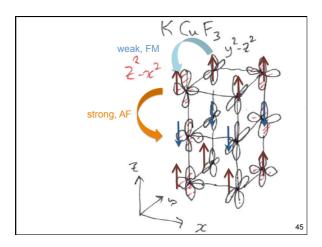


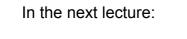





A parable: p-orbitals					
$Y_{lm}(heta,\phi)$ l	$= 1 \qquad m = 0 \ \cos \theta \\ m = 1 \ \sin \theta e^{i\phi}$				
$\hat{L}_z = -i\hbar rac{\partial}{\partial \phi}$ imag	$m=-1~\sin heta{ m e}^{-i\phi}$ ginary, $ m angle$ eigenfunctions				
$ p_z\rangle = 0\rangle$ $ p_x\rangle = \frac{ 1\rangle + -1\rangle}{ 1\rangle - -1\rangle}$ $ p_y\rangle = \frac{ 1\rangle - -1\rangle}{\sqrt{2}}$	note that these contain the eigenfunctions $ m angle$ and $ -m angle$ in equal mixtures				
$\sqrt{2i}$	38				







- spin waves
- frustration
- phase transitions
- metallic magnets

47