Units in magnetism

Table A.1: Units in the SI system and the cgs system. The abbreviations are $\mathrm{m}=$ metre, g=gramme, $\mathrm{N}=$ Newton, $\mathrm{J}=$ Joule, $\mathrm{T}=$ Tesla, $\mathrm{G}=$ Gauss, $\mathrm{A}=\mathrm{Amp}$, Oe=Oersted, $\mathrm{Wb}=$ Weber, $\mathrm{Mx}=$ Maxwell. The term emu is short for 'electromagnetic unit' and is not a unit in the conventional sense. It is sometimes used as a magnetic moment ($1 \mathrm{emu}=1 \mathrm{erg} \mathrm{G}^{-1}$) and sometimes takes the dimensions of volume ($1 \mathrm{emu}=1 \mathrm{~cm}^{3}$).

Quantity	symbol		SI unit		cgs unit
Length	x	10^{-2}	m	$=1$	cm
Mass	m	10^{-3}	kg	$=1$	g
Force	F	10^{-5}	N	$=1$	dyne
Energy	E	10^{-7}	J	$=1$	erg
Magnetic induction	B	10^{-4}	T	$=1$	G
Magnetic field strength	H	$10^{3} / 4 \pi$	Am^{-1}	$=1$	Oe
Magnetic moment	μ	10^{-3}	$\begin{aligned} & \mathrm{JT}^{-1} \\ & \text { or } \mathrm{Am}^{2} \end{aligned}$	$=1$	$\operatorname{erg} G^{-1}$ or emu
Magnetization (= moment per volume)	M	10^{3}	$\begin{aligned} & \mathrm{Am}^{-1} \text { or } \\ & \mathrm{J} \mathrm{~T}^{-1} \mathrm{~m}^{-3} \end{aligned}$	$=1$	Oe or emu cm ${ }^{-3}$
Magnetic susceptibility	χ	4π	$\times 1$	$=1$	$\begin{aligned} & \text { emu cm }{ }^{-3} \text { or } \\ & \text { emu cm } \\ & \mathrm{Oe}^{-3} \mathrm{Oe}^{-1} \end{aligned}$
Molar susceptibility	χ_{m}	$4 \pi \times 10^{-6}$	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$		$\begin{aligned} & \text { emu mol }{ }^{-1} \text { or } \\ & \text { emu mol } \\ & \mathrm{Oe}^{-1} \end{aligned}$
Mass susceptibility	$\chi \mathrm{g}$	$4 \pi \times 10^{-3}$	$\mathrm{m}^{3} \mathrm{~kg}^{-1}$		$\begin{aligned} & \mathrm{emu} \mathrm{~g}^{-1} \text { or } \\ & \mathrm{emu} \mathrm{~g}^{-1} \mathrm{Oe}^{-1} \end{aligned}$
Magnetic flux	ϕ	10^{-8}	$\begin{aligned} & \mathrm{Tm}^{2} \\ & \text { or } \mathrm{Wb} \end{aligned}$	$=1$	$\begin{aligned} & \mathrm{G} \mathrm{~cm}^{2} \\ & \text { or } \mathrm{Mx} \end{aligned}$
Demagnetization factor	N		$0<\mathrm{N}<1$		$0<\mathrm{N}<4 \pi$

Though not an SI unit, the Bohr magneton $\mu_{B}=9.274 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$ is a useful measure of magnetic moment since it corresponds to the magnetic moment of a 1 s electron in hydrogen. For a paramagnet, the molar susceptibility χ_{m} is given by Curie's law which is in SI units

$$
\begin{equation*}
\chi_{\mathrm{m}}=\frac{\mu_{0} N_{\mathrm{A}} \mu_{\mathrm{eff}}^{2} \mu_{B}^{2}}{3 k_{B} T} \tag{A.1}
\end{equation*}
$$

where N_{A} is Avogadro's number. Hence $\chi_{\mathrm{m}} T$ is independent of temperature and this can be related to the effective moment. Hence by rearranging equation A.1, one has $\mu_{\text {eff }}=\left[3 k_{B} / \mu_{0} N_{\mathrm{A}} \mu_{B}^{2}\right]^{1 / 2} \sqrt{\chi_{\mathrm{m}} T}$, so that

$$
\begin{align*}
& \mu_{\mathrm{eff}}=797.8 \sqrt{\chi_{\mathrm{m}}^{\mathrm{SI}} T} \approx 800 \sqrt{\chi_{\mathrm{m}}^{\mathrm{SI}} T} \tag{A.2}\\
& \mu_{\mathrm{eff}}=2.827 \sqrt{\chi_{\mathrm{m}}^{\mathrm{cgs}} T} \approx \sqrt{8 \chi_{\mathrm{m}}^{\mathrm{cgs}} T} \tag{A.3}
\end{align*}
$$

where μ_{eff} is measured in Bohr magnetons per formula unit, $\chi_{\mathrm{m}}^{\mathrm{SI}}$ is measured in $\mathrm{m}^{3} \mathrm{~mol}^{-1}$, and $\chi_{\mathrm{m}}^{\mathrm{cgs}}$ is measured in emu mol ${ }^{-1}$. These numerical relationships can be useful for extracting effective moments from graphs of $\chi_{\mathrm{m}} T$ against T.

Adapted and updated from part of Appendix A of Magnetism in Condensed Matter, by Stephen Blundell, Oxford University Press 2001. ©S J Blundell 2005

