Physics of Strongly Correlated Electrons: Selected Topics

Jozef Spałek

Marian Smoluchowski Institute of Physics, Jagiellonian University and AGH University of Science and Technology PL - 30-059 KRAKÓW

Lecture I: Metal-insulator transition at T>0

- 1. Elementary derivation of Gutzwiller approach, Brinkmann-Rice criterion
- 2. Mott criterion
- **3.** Thermodynamics of Mott transition
- 4. 1st and 2nd quantization combined
- 5. Critical and quantum critical behavior
- 6. Orbitally degenerate bands
- 7. Spin-split masses, metamagnetism

Delocalized versus localized

Plane waves (Bloch states)

b) Mott-Hubbard insulator

Atomic states

Magnetic versus superconducting

- 4f La CePrNdPmSmEu GdTbDyHoErTmYbLu
- 5f Ac Th Pa'U Np Pu Am Cm Bk Cf Es Fm Md No Lr
- 3d Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn
- 4d Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

5d Ba Lu Hf Ta W Re Os Ir Pt Au Hg

MagneticSuperconducting

Narrow-band systems (3d) E↑ Ε E_{F} MOTT LOCALIZATION Hybridized systems (f) Ε Ε 5d-6s KONDO V LATTICE FORMATION 4f,5f

Localization criterion: Mott (Wigner)

Kinetic energy in e⁻ gas/particle

$$\overline{\in} = \frac{3}{5} \in_{\mathrm{F}} = \frac{3}{5} \frac{\hbar^2}{2m^*} \left(3\pi^2 \frac{N}{V} \right)^{\frac{2}{3}} \sim \rho^{\frac{2}{3}}$$

Electron-electron repulsion energy/particle

$$\in_{e-e} = \frac{1}{2} \frac{e^2}{\varepsilon d_{e-e}} = \frac{e^2}{2\varepsilon} \rho^{\frac{1}{3}}$$

Where the classical interparticle distance is

Instability of the electron gas concept if:

$$\overline{\in} = \in_{e-e}$$
 gas instability

Note: e-e interaction dominates if $\in_{e-e} > \overline{\in}$, i.e. $\rho < \rho_c$

$$\left(\frac{\hbar^2}{m^* e^2} \varepsilon\right) \rho_c^{\frac{1}{3}} = \frac{5}{3} \frac{1}{\left(3\pi^2\right)^{\frac{2}{3}}} \cong 0.17$$

a_B \longrightarrow effective Bohr radius

$$a_B \cdot \rho_c^{\frac{1}{3}} \cong 0.17 \sim 0.2$$

Other effects \Rightarrow **Fermi - sphere collaps**?

In one dimension:

$$a_B \rho_C \cong 1 \implies R_C \cong a_B$$

Yet another Mott criterion of localization

A different derivation by Mott (1961).

Attractive potential screened by gas (Kittel,1990)

$$V(\mathbf{r}) = -\frac{e^2}{\kappa r} \exp(-q r)$$

q is the inverse Thomas-Fermi screening length

$$q = \frac{4 \text{ m}^* \text{ e}^2 \text{ n}_c^{1/3}}{\epsilon \hbar^2}$$

A screened potential does not lead to a bound state if (Landau, Lifshitz, 1990):

$$q > \frac{m^* e^2}{\epsilon \hbar^2} = a_B^{-1}$$

$$q^{-1} = a_B \implies n_c^{1/3} a_B = 0.25$$

First period: 1980-2000

J.S. Eur. J. Phys. 21, 511-34 (2001)

H. Kuwamoto et al., PRB 22 (1980) 2626

$$\begin{split} H &= \epsilon_a^{\text{eff}} \sum_j n_j + t \sum_{j\sigma} \left(e^{-i\phi/N} c_{j\sigma}^{\dagger} c_{j+1\sigma} + \text{h.c.} \right) + U \sum_i n_{i\uparrow} n_{i\downarrow} + \sum_{i < j} K_{ij} \delta n_i \delta n_j, \\ \delta n_i &\equiv n_i - 1, \ \epsilon_a^{\text{eff}} = \epsilon_a + N^{-1} \sum_{i < j} \left(2/R_{ij} + K_{ij} \right) \\ \mathbf{t}_{\langle ij \rangle} &\equiv \mathbf{t} &\equiv \left\langle \mathbf{w}_i | \mathbf{H}_1 | \mathbf{w}_j \right\rangle \\ \mathbf{U} &\equiv \left\langle \mathbf{w}_i | \mathbf{w}_i | \mathbf{V}_{12} | \mathbf{w}_i | \mathbf{w}_i \right\rangle \\ \mathbf{K}_{ij} &\equiv \left\langle \mathbf{w}_i | \mathbf{w}_j | \mathbf{V}_{12} | \mathbf{w}_i | \mathbf{w}_j \right\rangle \end{split}$$

Atomic functions

$$\Phi_{i}(\mathbf{r}) = (\pi \alpha^{3})^{\frac{1}{2}} \exp(-\alpha |\mathbf{r} - \mathbf{R}_{i}|)$$

$$\langle \Phi_{i} | \Phi_{j} \rangle = S_{ij}$$

Wannier functions

$$\mathbf{w}_{i}(\mathbf{r}) = \sum_{j} \beta_{ij} \Psi_{j}(\mathbf{r})$$
$$\left\langle \mathbf{w}_{i} \middle| \mathbf{w}_{j} \right\rangle = \delta_{ij}$$

Qualitative characteristics:

1) Bare band width
$$W = 2 z |t|$$
; $t = \int d^3 r w_i(\mathbf{r}) H_1 w_j(\mathbf{r})$
2) Coulomb repulsion $U = \int d^3 r d^3 r' |w_i(\mathbf{r})|^2 \frac{e^2}{|\mathbf{r} - \mathbf{r}'|} |w_i(\mathbf{r}')|^2$
 $\left(K_{ij} = \int d^3 r d^3 r' |w_i(\mathbf{r})|^2 \frac{e^2}{|\mathbf{r} - \mathbf{r}'|} |w_j(\mathbf{r}')|^2\right)$
3) Band filling $n = \sum_{\sigma} \langle a_{i\sigma}^{\dagger} a_{i\sigma} \rangle = \frac{1}{N} \sum_{\sigma, k \le k_r} \langle a_{k\sigma}^{\dagger} a_{k\sigma} \rangle$
(empty) $0 \le n \le 2$ (full)
Metallic limit: MIT: Strong correlations:
U, K << W U \cong W W << U
Physically U/W – important parameter $(U - K)$

Physically U/w – Important parameter

The concept of band narrowing (renormalization) and competition between band and Coulomb energies

Why electronic transition?

- •**Band (kinetic) energy:** $W = 1 \div 2 \text{ eV}$
- •Coulomb repulsion energy: U ~ few eV
- •Thermal energy: $k_B T \sim 10 \text{ meV} (T \sim 100 \text{ K})$
- •Why phase transition possible? For $U \sim U_C \sim W$

$$\begin{split} W &\rightarrow \widetilde{W} = W q \leq 0.1 \, eV \\ U \left\langle n_{i\uparrow} n_{i\downarrow} \right\rangle \sim 0.1 \, eV \\ \frac{E_G}{N} = -\frac{q \, W}{4} + U \left\langle n_{i\uparrow} n_{i\downarrow} \right\rangle \sim k_B T, \ g \, \mu_B \, H_a \,, \text{disorder} \end{split}$$

$$\frac{\text{Canonical model: Hubbard (results):}}{\frac{E_{G}}{N} = \frac{\langle H \rangle}{N} = \frac{1}{N} \sum_{k\sigma} E_{k} f(E_{k}) + U \langle \underline{n}_{i\uparrow} \underline{n}_{i\downarrow} \rangle}{\sum_{ad^{2}} e_{a}}$$

$$\begin{cases} E_{k} = q (d^{2}) \in_{k} \\ q (d^{2}) = 8 d^{2} (1 - 2 d^{2}) < 1 \\ E_{G} = E_{min} : \qquad U_{C} \equiv 8 l \in l : \\ d^{2} = \frac{1}{4} (1 - \frac{U}{U_{C}}), \quad 8 |\overline{e}| = U_{C} \\ \frac{E_{G}}{N} = (1 - \frac{U}{U_{C}})^{2} \overline{e} \\ \frac{m^{*}}{m_{0}} = \frac{1}{1 - (\frac{U}{U_{C}})^{2}} \sim \gamma \rightarrow \infty \\ \frac{\chi}{\gamma} = \frac{1 + \frac{U}{2U_{C}}}{(1 + \frac{U}{U_{C}})^{2}} \sim 4 \end{cases}$$

Simplest model: Hubbard model at half filling (n=1): classical regime for fermion systems –

Nonzero temperature (statistical physics): consequences of mass renormalization, etc.

Coexistence: $F_{metal} = F_{insulator}$ (PM – PI)

Important: Two transitions

J. S. et al., PRL <u>59</u>, 728 (1987) – orbitally nondegenerate; A. Klejnberg & J. S., PRB <u>57</u>, 12 041 (1998) – degenerate.

Discontinuous Metal-Insulator Transitions and Fermi-Liquid Behavior of Correlated Electrons

J. Spatek Department of Solid State Physics, Akademia Gorniczo-Hutnicza, Pl-30059 Krakow, Poland

and

A. Datta and J. M. Honig Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (Received 2 June 1986)

J.S., in: Encycl. of Condens.Matter Phys., vol.3, 126-36 (2005)

Conclusions I:

1. The concept of (narrow) band narrowing-> quasiparticle-mass renormalization 2. First-order MIT with critical (quantum) points **3.** Theory valid below Uc - in the metallic phase 4. Double occupancy d as an mean-field order parameter

Extension I: Almost localized Fermi liquid (ALFL)

Landau – Fermi liquids of fermions

For $T \rightarrow 0$

- Electrical resistivity: $\rho = \rho_0 + AT^2$
- Magnetic susceptibility: $\chi = \chi_0 + aT^2$
- Specific heat: $c_p = \gamma T + \delta T^3 \ln T / T_0$ $\gamma \propto m^*$
- Wilson ratio: $R = \chi / \chi_0 / \gamma / \gamma_0$
- Kadowaki Woods scaling $A \sim \gamma^2$
- Quasiparticle lifetime: $\tau^{-1} = \widetilde{\alpha} \omega^2 + bT^2$

ALFL: Important novel points:

- 1. Concept of spin-dependent quasiparticle mass (1990 \rightarrow 2005): m_{\sigma}/m_{0} = 1/Z_{\sigma}
- 2. Moving Cooper pair: Q nonzero
- 3. Discontinuous BCS FFLO transition

Spin-dependent masses from the de Haas-van Alphen effect

	m↑	m↓	φ _x		
$ heta=0^{ m o}$					
α_1	21.2 ± 0.2	94 ± 7	3.14		
α_2	24.2 ± 0.4	94 ± 8	3.14		
α3	14.5 ± 0.6	30 ± 8	2.42		
$\theta = 10^{\circ}$					
α_1	21.3 ± 2.4	39 ± 5	3.14		
α_2	24.7 ± 3.5	50 ± 13	3.14		
α_3	17.6 ± 0.8	40 ± 4	3.14		

Anomalous de Haas-van Alphen Oscillations in CeCoIn5 A. McCollam, S. R. Julian, P. M. C. Rourke, D. Aoki, and J. Flouquet

Phys. Rev. Lett., 94, 186401 (2005); Physica B (2005).

See also: I. Sheikin, et al., Phys. Rev. B 67, 094420 (2003)

Extension II: (Classical) critical behavior

P. Limelette et al.., Science **302**, 89-92 (2003)

Critical point for 2D system: organic metal a novel behavior

F. Kagawa et al., Nature 436, 534 (2005)

Critical point in magnetic system:

NiSSe system

FIG. 77. The x dependence of χ , A, and residual resistivity (ρ_0) for NiS_{2-x}Se_x. From Miyasaka *et al.*, 1997.

Imada/Fujimori/Tokura, RMP (1998)

FIG. 1. Pressure-temperature phase diagram for crystals of NiS_{1.56}Se_{0.44}. The critical pressure for the T = 0 metal-insulator transition is less than 2 kbar. Each kbar of external pressure corresponds to a chemical pressure $\Delta x = 0.017$. AFI = antiferromagnetic insulator; AFM = antiferromagnetic metal.

Fig. 2. The large T^2 dependence of the resistivity p with slope increasing at the approach to the MI transition indicates a greatly enhanced electronic effective mass. Inset: The effective mass enhancement is revealed as well by the changing slope of the $T^{1/2}$ dependence of the conductivity σ for T < 1 K, characteristic of electronelectron interactions in the presence of disorder.

A. Husmann et al., Science 274, 1875 (1996)

Fig. 1. The $T \rightarrow 0$ conductivity σ_0 as a function of reduced pressure *t* for two crystals with $P_c = 1.51$ kbar (filled circles) and $P_c = 1.67$ kbar (open circles) at the MI transition. The conductivity falls smoothly to zero, $\sigma_0 \sim t^{\mu}$, where 1 (milliohm-cm)⁻¹ is of order the Mott conductivity.

Extension III: Correlations + wave function renormalization (2008-9)

Renormalized N-particle wavefunction

EDABI: J. Spałek, R. Podsiadły, W. Wójcik, and A. Rycerz, Phys.Rev. B 61, 15676 (2000);→ (2001-2007); J. Kurzyk et al. (2008-9)

Momentum distribution:Fermi-Dirac vs continuous

J. S. & A. Rycerz, PRB-R (2001); J.S., in Encyclopedia of Condensed Matter Physics, Elsevier, vol. 3, pp. 126-136 (2005)

Renormalized band energies: even and odd

Square lattice

Simple Cubic lattice

Microscopic parameters at the critical point for GA solutions and for the lattices considered

Struct.	α / a ₀	R _C / a ₀	(U/W) _C
СН	1.021	3.288	2.547
SQ	1.051	3.622	1.621
TR	1.054	3.569	1.318
SC	1.099	4.236	1.337
BCC	1.109	4.384	1.080
FCC	1.128	4.351	0.880

Conclusions II:

Wave function renormalization + Two-particle correlations combined

Extension IV: Orbitally degenerate model

$$H_1 = \frac{1}{2}U\sum_i n_i^2 - J\sum_i \mathbf{S}_i^2 + \frac{1}{4}J\sum_{il} n_{il}^2 - J\sum_{il} (\mathbf{S}_{il}^z)^2$$

E.M. Goerlich et al. (2009) l = 1,..., L - the orbital index

Hubbard-Stratonowich transformation

$$\exp\left\{\frac{\hat{\alpha}^2}{2}\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left\{-\frac{x^2}{2} \pm \hat{\alpha}x\right\}$$

To be continued

Supplement: Infinite Hubbard chain vs. nanochain

Ground state energy functional:

$$\frac{E}{N} = \epsilon e^{\text{eff}}_{a} - 4 t \int_{0}^{\infty} \frac{J_{0}(\omega)J_{1}(\omega)}{\omega \left[1 + \exp(\omega U/2t)\right]} d\omega$$

$$\delta n_i \equiv 1 - n_i \equiv 0$$

Periodic bound cond.

ADI ATTA DI

Triangle lattice

Chain

$$\mathbf{t} = \left\langle \mathbf{w}_{i} | \mathbf{H}_{1} | \mathbf{w}_{j} \right\rangle$$
$$\mathbf{U} = \left\langle \mathbf{w}_{i}^{2} | \mathbf{V}_{12} | \mathbf{w}_{i}^{2} \right\rangle$$

Renormalized wave equation:

$$\frac{\delta(\mathbf{E}-\mu \mathbf{N}_{e})}{\delta \mathbf{w}_{i}^{*}(\mathbf{r})} - \nabla \cdot \frac{\delta(\mathbf{E}-\mu \mathbf{N}_{e})}{\delta(\nabla \mathbf{w}_{i}^{*}(\mathbf{r}))} = \sum_{i \ge j} \lambda_{ij} \mathbf{w}_{j}(\mathbf{r})$$

Adjustable Slater or STO-3G basis forms a trial Wannier function obtained variationally

Collaboration

Jan Kurzyk – Tech. Univ., Krakow

Robert Podsiadły – Jag. Univ., Krakow

Włodek Wójcik – Tech. Univ., Krakow

Fig. 4. Dynamical scaling curve for the six closest reduced pressures t to the T = 0 Mott-Hubbard MI transition. The ability to collapse the data onto a universal curve reflects the measurable influence of the quantum critical point.

$$\begin{split} \begin{split} &[(\Phi_i)_{\sigma\sigma'}] = \begin{pmatrix} \eta_i + v_i^z & v_i^- \\ v_i^+ & \eta_i - v_i^z \end{pmatrix} \\ &N = N(U, J, L) = \frac{1}{4U} + \frac{L}{2J} - \frac{\left(\frac{1}{4U} - \frac{L}{2J}\right)^2}{\frac{1}{4U} + \frac{L}{2J}} = \frac{2L}{J + 2LU} \sim \frac{1}{U} \\ &V = V(U, J, L) = \frac{1}{2J} - \frac{1}{2J(1+L)} = \frac{L}{2J} \\ &Z = \int D[\bar{a}, a]_k \int d\eta d^3 v \exp\left\{-\frac{\beta}{2}\sum_n \left(N\eta^2 + Vv^2\right)\right\} \\ &\times \exp\left\{-\sum_{klmn} (\bar{a}_{kln\uparrow}, \bar{a}_{kln\downarrow}) \left((-i\omega_n + \epsilon_k - \mu)\delta_{mn}\mathbf{1} + \hat{\Phi}_{m-n}\right) \begin{pmatrix} a_{klm\uparrow} \\ a_{klm\downarrow} \end{pmatrix}\right\} \end{split}$$

$$Z = \exp\left\{-\frac{1}{2}\beta(N\eta_0^2 + Vv_0^2) + \underbrace{2\ln(\beta v_0)}_{*} + \sum_{kn} \ln\left[\beta^2(\epsilon_k - \mu + \eta_0 + \iota\omega_n)^2 - \beta^2 v_0^2\right]\right\}$$

= exp{-S_{eff}}

Extension III: Effective Landau-Hertz functional

 $\Omega_{\rm eff} =$

 $\Omega_{\rm free} + (N/2 + LC_0)\eta^2 + (V/2 - LC_0)v^2 + L\beta^2 C_1(\eta^4 + v^4 - 6\eta^2 v^2)$

S. Balibar, La Recherche

Face Centered Cubic lattice

Body Centered Cubic lattice

Part II: Real space pairing and d-wave superconductivity

- 1. Derivation of t-J model from the Hubbard model
- 2. Real-space pairing operators vs. magnetism
- 3. Mean-field solution(s)
- 4. Interorbital pairing: heavy fermions
- 5. Spin-triplet pairing(?)

