Electronic Structure:

LDA, LSDA, Tight Binding, DMFT

Manuel Richter (IFW Dresden)

- **A** Local Density Approximation (LDA)
- **B** Tight Binding Approximation (TB)
- **C** Local Spin Density Approximation (LSDA)
- **D** Applications and a Hint on Dynamical Mean Field Theory (DMFT)

A few words about DMFT (an ignoramus' view)

- Dynamical mean field theory is very fashionable (gold rush).
- DMFT is not *ab initio*.
- DMFT is not parameter free.
- Many people doubt that you (at present) can evaluate ground state geometries and related properties.
- DMFT is a Green's function theory with many different implementations.
- But: DMFT can give a physically motivated access to both high (eV) and low (meV) energy quasi-particle excitations. It can (partly) describe elevated temperature properties, paramagnetism.

• Read A. Georges *et al.*, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. **68**, 13–125 (1996)!

The ideal material for magnetic cooling?

Facts on magnetic cooling:

- efficiency up to 50% higher than in conventionel (compression) systems
- can potentially save 5% of the world electric energy consumption
- the cooling power is proportional to ΔM and to the operation frequency

$P \sim \Delta M \nu$

- up to now, all demontrators work with Gd

Facts on LaFe_{12-x}Si_x:

- "almost pure" iron, $x\approx 1$
- almost no hysteresis, if prepared by melt-spinning
- magnetocaloric effect comparable with or larger than Gd
- operation temperature can be tuned (change x, add Co, add hydrogen)

The reason for its large ΔM and its low hysteresis

The reason for its large ΔM and its low hysteresis

LaFe $_{12-x}$ Si $_x$: Comparison with bcc iron

prediction of metamagnetism: Kuz'min and Richter, PRB 2007;

verification: Lyubina et al. PRL 2008

Subnanometer Magnetic Storage Bits: a Prediction

arXiv.org/abs/0906.4645

Co-based magnetic storage materials

(MAE: magnetic anisotropy energy, $\geq 40 \ kT$ required)

material	MAE per atom	atoms/bit	comments
Co(Cr,Pt)	$pprox 0.05~{ m meV}$	400,000	current bit size about 5,000 nm ³
hcp Co	0.065 meV	15,000	
$L1_0$ CoPt	1 meV	1,000	15 nm ³ per bit seems possible, <mark>but</mark> such small clusters do not order (Gruner 08)
Co on Pt(111)	9 meV (Gambardella 03)	1 at 3 K?	MAE per atom $\sim 1/$ number of Co atoms
predictions for free Co_2	14 meV (Strandberg 07, 08) 95 meV (Fritsch 08)	2 at 9 K? 2 at 60 K?	(lower estimate) Does bonding reduce the MAE? (upper estimate)

Huge magnetic anisotropy due to a singly occupied doublet

LSDA+so LSDA LSDA+so

(see Strandberg *et al.*, Nature Materials 2007)

Idea: a hexagonal symmetry ...

... would not break the degeneracy of (non-relativistic) δ -states!

Will the bonding be strong enough? Will magnetism survive?

Check Co_2 -benzene as a model for Co_2 on graphene or on graphite!

Co₂-benzene: structures and spin states

 $2 \mu_B$ 2.67 eV $1 \mu_{\rm B}$ 2.47 eV 2.28 eV $2 \mu_{\rm B} \bullet 1 \mu_{\rm B}$ $2 \ \mu_B$ $2 \mu_B$ 2.11 eV $2 \ \mu_B$ $2 \mu_B$ 1.39 eV 1.40 eV 1.04 eV $2 \ \mu_B$ $2 \mu_B$ 0.98 eV $2.5\ \mu_B$ $1.5 \ \mu_B$ 0.00 eV 0.00 eV **GGA-PBE** MP-2

Perpendicular Pd₂-benzene and Pt₂-benzene: Lüttgens 01

blue: singly occupied doublet

orange:

empty

black: filled

MAE of Co in different systems: heavy metals are not needed

Open problems

- Cheap production of large regular arrays?
- Protection against oxidation without reducing the anisotropy?
- Appropriate read/write technology? arXiv.org/abs/0906.4645
- Cooling ... ?

You can do predictive theory for magnetic materials! ... using advanced electronic structure methods.

method: http://www.fplo.de/