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What are Monte Carlo methods?

Computer 
simulation 
methods:

- Molecular dynamics (deterministic 
simulations, based on the integration of the 
equation of motion)

- Monte Carlo methods (Stochastic simulation 
techniques, where the random number 
generation plays a crucial role)

- In general we speak about Monte Carlo simulation methods  whenever the use 
of the random numbers are crucial in the algorithm!

- Monte Carlo techniques are widely used in studying models of: statistical 
physics, soft condensed matter physics, material science,  many-body problems, 
complex systems,  fluid mechanics, biophysics, econo-physics,  nonlinear 
phenomena, particle physics, heavy-ion physics, surface physics, neuroscience 
etc….

MC: the art of using pseudo random numbers 



  

Deterministic versus stochastic simulations

the Galton table 

  - used to exemplify the 
normal distribution

Molecular dynamics approach: integrating in 
time the equation of motion of the particles.

advantage  the realistic dynamics

disadvantage  slow even on supercomputers, 
only short time-scales or small systems can be 
simulated  

Monte Carlo approach: the result of many 
deterministic effects is handled as a 
stochastic (random) force.

advantage  fast, easy to implement

disadvantage  less realistic, many elements 
of the real phenomena are not in the model
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Random number: 1 
with p=1/2 and -1 
with p=1/2

Molecular dynamics         MC



  

Some necessary eSome necessary elements of Stochastic Processeslements of Stochastic Processes
Markov processes/ Markov chainsMarkov processes/ Markov chains

Markov processes (chain) are characterized by a lack of memory (i.e. the statistical properties 
of the immediate future are uniquely determined from the present, regardless of the past)

Example: random walk --> Markov process; self-avoiding walk is NOT a Markov process

Let x i be the state of the stochastic system at step “i”, a stochastic variable

The time- evolution of the system is described by a sequence of states: x0,  x 1, ….., xn, ….

The conditional probability that xn is realized if previously we had: x0,  x 1, ….., xn-1: 
),.....|( 01 xxxP nn 

Definition: For a Markov process we have: )|(),...,,|( 1021   nnnnn xxPxxxxP

0012110 ).,()....|().|(),...,( axxPxxPxxPxxP nnnnn 

jmjmjm PxxPxxP ,)(),(  one-step transition probabilities, elements of 
the stochastic matrix

Stochastic process: let x label the element of any state-space.  A process that randomly visits in 
time these possible x states is a stochastic process:

Example the 1D random walk:

0 1 32-3 -2 -1-4

2D random 
walk:

P=1/2P=1/2



  

- A Markov chain is irreducible if and only if every state can be reached from every 
state! (the stochastic matrix is irreducible)

-A Markov chain is aperiodic, if all states are aperiodic. A state x has a period T>1 if 
Pii

(n)=0 unless n=zT (z: integer), and T is the smallest integer with this property. A state 
is aperiodic if no such T>1 exist. 

   (Here we denoted by Pik
(n) the probability to get from state i to state k through n 

steps)
Definition: An irreducible and aperiodic Markov chain is ergodic

The basic theorem for Markov processes:

An ergodic Markov chain posses an invariant distribution wk over the 
possible states

Definition: A probability distribution over the possible 
states (wk) is called invariant or stationary for a given 
Markov chain if satisfy:
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kw The probability that x=k  during an 
infinitely long process



  

One dimensional Monte Carlo integrationOne dimensional Monte Carlo integration
Problem: given a function f(x), compute the integral: 

b

a

dxxfI )(

The integral can be computed by choosing n points (xi) randomly on the 
[a,b] interval, and with a uniform distribution : 
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The strong law of large numbers guarantees us that for a sufficiently large sample 
one can come arbitrary close to the desired integral!

Let x1,x2,…,xn be random numbers selected according

to a normalized probability density           ,  then : 

(!) the above affirmation is also true if  the 

random numbers are correlated, or the interval is finite
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 How rapidly the sum converge? --> for                         very badly!!!

Central limit theorem   the convergence improve if the shape of                
approximates f(x)   we are sampling in the neighborhood where f(x) is big
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Important sampling

The important sampling MC method will calculate the I integral by sampling 
on random points on the [a,b] interval according to a            distribution 
which approximates the shape of |f(x)|
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the convergence is infinitely  fast if |)(|)( xfx 

Before getting to excited…. one cannot simply choose                        , 
since in this case one cannot normalize          (normalization of         is 
equivalent with the initial problem  one cannot generate thus random 
numbers simply according to the desired                        distribution    
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Theoretical approach to a magnetic ordering

relevant energies 

[internal interactions + interaction 
with external magnetic field, h, 
+kinetic terms]

heat bath

Usually canonic ensemble is used  T, N, h is fixed
(T  temperature, h  external magnetic field, N particle number)

Hamiltonian, H(xi,H)=Ei

(xi  labels the microstates) 

is a stochastic effect 
 favor randomness

a deterministic 
effect  could 
favor ordering

       T    or )/(1 kT

Statistical thermodynamics 
approach
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F the free energy;   k the Boltzmann constant assuming that the density of 
state-space points is constant 



  

What are we interested in ?
The primary goal of the MC type simulations in magnetic systems is 
to estimate some averages at various T, h and N values
M 2M
E

2E

average magnetization average square magnetization
average energy

average square energy

in canonical ensemble
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we are also interested in measurable quantities like:        ;  VC 
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heat capacity at 
constant volume

susceptibility

the problem is that these sums cannot be usually analytically calculated  MC methods !!

exact enumeration is possible for small N (not of thermodynamic interest)

a sum with huge number of 
terms (number of terms 
increasing exponentially with 
system size…ex: 2N)…or very 
high dimensional integrals



  

The Metropolis MC method for magnetic systems
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We want to compute integrals 
(sums) like:
x -->elements of the state-space

--> the entire state-space

H(x)--> the Hamiltonian of the system

Very high dimensional integral which is exactly computable only for a limited 
number of problems!!!

Basic idea: to use the important sampling for calculating these integrals

IF in the MC integration we choose the states with probability            :
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The Metropolis et al.  idea...The Metropolis et al.  idea...

an algorithm has to be derived that generates states according to the desired            !

Basic idea: using a Markov chain, such that starting from an initial state x0 further 
states are generated which are ultimately distributed according to                                   
                                                                       
               is an invariant distribution over the possible states          for this Markov chain need to specify the                     transition probabilities from state 
x to state x’. In order that the invariant limiting distribution be           we need:

• 1. The Markov chain should be ergodic (any state point should be reachable from any 
other state-point through the Markov chain)

• 2. For all  possible x microstates: 

• 3. For all possible x microstates :                                                     (condition for the 

existence of the limiting distribution)
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Instead of 2. and 3. a stronger but simpler condition can be used, the so called 
detailed balance: 
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Result: We can construct Markov chains leading to the desired             distribution, 
without the prior knowledge of Z !!!

N. Metropolis et. al; J. Chem. Phys., vol. 21, 1087 (1953) 
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kT
xHxHu In the canonical ensemble:

Detailed 
balance 
satisfied

Algorithm for MC simulations:
1. Design an ergodic Markov process on the possible microstates (each state should be reachable 

from each other)
2.      Specify an initial x microstate for starting
3.      Choose randomly a new x’ microstate (preferably so that                             )
4.       Compute the value of 
5.       Generate a uniformly distributed random number r between [0,1].
6.       If              --> jump to the new state, and return to 3.
          If               --> count the old state as new and return 3.
7.      Average the quantity A for the generated states. Repeat steps 1-6 until the average converge

The Metropolis algorithm:
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The Ising spin systemThe Ising spin system
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- In 1D and 2D exactly solvable!

- Due to the local interactions calculating Z is 
difficult.

- exact solution very difficult in 2D

- no exact solution in 3D

- Approximation methods: mean-field  theory, 
renormalization, high and low temperature 
expansion 

- spontaneous magnetization is 
possible (M0 for h=0)
- first model for understanding 
ferro- and anti-ferromagnetism 
for localized spins
- for J>0 --> ferromagnetic order
- for J<0 --> anti-ferromagnetic 
order
- no phase transition in 1D
- ferro-paramagnetic phase 
transition for D>1
- second order phase transition 
(order-disorder)



  

Implementing the Metropolis MC for the 2D Ising modelImplementing the Metropolis MC for the 2D Ising model
Problem: Study m(T), <E(T)>, Cv(T), (T) and Tc for 2D Ising model 

We consider h=0, and fix J=1.     
The temperature units are considered so that k=1.

Square lattice topology is considered
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The Metropolis MC algorithm for the problem:
1. Fix a temperature (T)

2. Consider an initial spin configuration (        ). For example for all 

3. Calculate the initial value of E and M

4. Consider a new spin configuration by virtually “flipping” one randomly selected spin 

5. Calculate the energy E’ of the new configuration, and the energy change       due to this spin-flip

6. Calculate the Metropolis P=P(x-->x’) probabilities for this change

7. Generate a random number “r” between 0 and 1

8. If            accept the flip and update the value of the energy to E’ and magnetization to M’

If             reject the spin flip and take again the initial E and M values in the needed averages

9. Repeat the steps 4 - 8 many times (drive the system to the desired canonical distribution of the 
states)

10. Repeat the steps 4 -8 by collecting the values of E, E2, M, M2, for the needed averages

11. Compute this average for a large number of microstates

12. Calculate the value of m(T), <E(T)>, Cv(T) and (T) using the given formulas

13. Change the temperature and repeat the algorithm for the new temperatures as well.

14. Construct the desired m(T), <E(T)>, Cv(T), (T) curves 
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Finite-size effects
-The biggest problem with computer simulations is that it can be performed for relatively small 
systems (far from the ones needed in thermodynamics)

- Real phase-transition (real divergences in the thermodynamic quantities – derivatives of the 
thermodynamic potential) is possible only in infinite systems! In a finite-size system the 
correlation length cannot diverge and it is cut by the size of the system  instead of 
divergences rounded maximum or continuous behavior is obtained.

-The results obtained by MC simulations for finite systems has to be carefully evaluated and 
extrapolated for infinite systems!  finite size scaling is needed!

- Important quantities that have to be scaled: m(T), Cv(T), (T) curves and the value of Tc 

ANN 

The order parameter m(T) as a function of 
T for different system sizes

Specific heat Cv(T)  as a function of T 
for  various system sizes 

LLN  LLN 

L=10
L=15
L=20
L=30
L=40

L=10
L=15
L=20
L=30
L=40



  

Observations and technical points:
•the considered P(x-->x’) transitions leads to an ergodic Markov process 

• one MC step is defined as N spin flip trials !

• By applying the above algorithm for T<Tc  one can also follow how the order arises 
in the system. This dynamics might not necessarily be the “real one”. The Metropolis 
MC method is intended to yield equilibrium properties and not dynamical 
simulation of the system!

•It is believed that the Glauber probabilities gives a realistic picture for the 
dynamics as well!

•One way of making the system quasi-infinite is to 
impose periodic boundary conditions (see the 
exercise in the computer codes!)  however this 
cuts also the correlation length 

•The simple Metropolis and Glauber algorithm can be further improved, designing 
more clever and faster methods



  

Efficient MC techniques
I. At low temperatures                  the Metropolis and Glauber algorithm is inefficient. 
After equilibrium is reached (spins are ordered) most of the spin-flips are rejected, 
and computer time is wasted  very long simulations are needed to get a reasonable 
estimate for the averages.  This drawback is eliminated by the BKL MC algorithm, see    
     A. B. Bortz, M.H. Kalos and J.L. Lebowitz, J. Comp. Phys. Vol. 17, 10 (1975) 

II.  In the neighborhood of Tc the Metropolis and Glauber algorithm is inefficient due 
to the critical slowing down the relaxation time is linked to the correlation length by 
the dynamical critical exponent, z.
 as T-->Tc we have  -->   and get that -->            
The big problem: for the Metropolis or the Glauber algorithm z=2 !!! ---> There are 
many MC steps necessary to generate independent (uncorrelated configurations) --> the 
sampling is restricted only to a small part of the state-space (The system has a long 
memory). This problem is partially solved by flipping together clusters of correlated 
spins (cluster algorithms)  see: U. Wolff, PRL vol. 62, 361 (1989); R.H. Swendsen and J-S. Wang, 
PRL vol. 58, 86 (1987)

III. Quantum-statistical models (Hubbard, Stoner, T-J, etc…) can be studied by 
Quantum MC methods, see: J. Tobochnik, G. Batrouni and H. Gould, Computers in Physics, vol. 6, 
673 (1992)

IV. Frustrated, spin-glass type models (Edward-Anderson, Potts glass, etc…) can be 
studied also by MC methods. One of these is the simulated annealing method, see:        
S. Kirckpatrick, G.D. Gelatt and M.P. Vecchi, Science vol. 220, 671 (1983)
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Conclusions

-MC methods are powerful tools for numerically studying various models of 
magnetism. 

-MC methods can be implemented on normal PC type computers, no 
supercomputers are needed. 

- MC methods are easy to learn … however some basic programming 
experience is needed 

-Mastering the MC method opens possibilities for studying many other 
models in solid-state physics, biophysics, ecology, economics, sociology, 
nuclear and medical physics, etc….

-The most cited paper in statistical physics is the paper of Metropolis et. al! 
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