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What is mean field approximation? 

1 moment in a magnetic field Hext:

Where the function g is 
-the Brillouin function (quantum case) 
- or the Langevin function (classical spins)

Heisenberg model:  

Main assumption:       is replaced by its average 

(similar to molecular field, or Hartree-Fock approximation)

⇒



field acting on       due to the other spins       : 

If there is also an external field:  



Hi is a local field due to 

-the interaction with neigboring spins (« molecular field »)

-the external field 

In a ferromagnet:           is constant:

⇒ molecular field is the the same on all sites:  



Solution of the mean field equation: 

In a ferromagnet:  

(g(x) is the Brillouin or 

Langevin  function)

M0/Ms

y = μ zJM0/kT

H=0



Ferromagnet: Order parameter and Curie temperature

If only nearest neighbor interactions J

Magnetization is calculated 
selfconsistently

At low T: M(T) – M0  exp(-2Tc/T)
Near Tc: M(T)  (Tc-T)1/2

Similar calculations for antiferromagnets, or longer range 
interactions



Thermodynamics of a ferromagnet in mean field approximation

-Calculate the partition function Z of the system: one spin in an 

effective field Heff (Heff = Hext + zJM0 )

For S= ½:

-Free energy: F = -kT LnZ

⇒ Susceptibility χ = - ∂2F/ ∂H2

⇒ Curie –Weiss law above Tc:  

⇒specific heat:   Cv = - T ∂2F/ ∂T2

⇒ Discontinuity at Tc : Δ Cv = 3kB/2

E↓ = +gμBHeff/2

E↑ = -gμBHeff/2



Same calculation can be done for an antiferrromagnet with 2 

sublattices:   Hi is site-dependent (HA and HB)

Free energy and thermodynamics: F = free energy of a moment in an 

effective field

Also ferrimagnetism, helicoidal  order,

commensurate and incommensurate 

orderings… 



General case: - interactions Jij between 1st, 2nd, 3rd ….
- Any kind of Bravais lattice (1 magnetic site per unit 

cell)

Energy:

In mean field approximation: 

Fourier transforms:

⇒

Energy is minimum at q0 for which J(q) 
is maximum



The phase diagram for the 1D chain:

-The helimagnetic state is stabilized in the frustrated region (J2 < 0)

-It is in general incommensurate with the lattice periodicity

J(q) = - J1 cos qa – J2 cos2qa

Extrema of J(q): 

- q = 0 (ferro)

- q = /a (antiferro)

- cosqa = -J1/4J2 (if |J1/4J2| ≤ 1 )



Example: multiferroics RMn2O5

4 commensurate structures

IC: incommensurate orderings
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In 3d: overlap of 3d wave functions of 
nearest neighbors atoms: metallic 
systems

⇒Competition between magnetic 
and kinetic energy: itinerant magnetism

Itinerant spin systems: magnetic 
moment is due to electrons in 
partially filled bands (3d band of 
transition metals) 

Itinerant  magnetic systems



Magnetism of 3d metals: due to itinerant 3 d electrons

Band structure of Ni

d electrons form a narrow band (few eV)

Description of d electrons: Hubbard model
-band energy  +  Local Coulomb repulsion with U≈W (few eV)
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One band : degeneracy of the 3d band neglected

Coulomb repulsion: electrostatic interactions between electrons

In solids this interaction is screened by the other charges: 

In metals  1/q is very small ( < interatomic distance). ⇒ Only short range 
interactions are important

Local Coulomb repulsion:  Uni↑ni↓

Hubbard model: 

⇒ from Pauli paramagnet to itinerant magnet and localized 
magnetic systems with increasing U 



Mean field approximation on the term :

1st term: Charge fluctuations are small

⇒ constant potential 

2nd term: 

Mean field approximation on the 2nd term: 

where

This 2nd term induces a spin-dependent potential on each site:

↓↓ ii nUn



Itinerant ferromagnetism: Stoner model at T=0

Description of 3d metals: narrow band + Coulomb interactions

Local Coulomb repulsion: Uni↑ni↓

U favors magnetic state

Hartree-Fock approximation: 

with: 
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Total energy variation:

δε )ε(ρ μ2M FB=

⇒ Stoner criterion : 

-If 1-Uρ(εF) < 0: magnetic state is stable 
(ferromagnetism)

-If 1-Uρ(εF) > 0 : paramagnetic state

Magnetic moments are non-integer
For pure transition metals:  
Fe → m0 ≈ 2.2 µB / atom
Co → m0 ≈ 1.8 µB / atom
Ni  →  m0 ≈ 0.64 µB / atom



Weak vs strong ferromagnets

W.F: both spin directions at EF (Fe)

SF: only 1 spin directions at EF
Gap in the spin flip excitations
(Co and Ni)



Itinerant systems: Stoner theory at finite temperature:

Order of magnitudes for Tc:
Fe: 1040  (Stoner: 4400-6000)
Co: 1400 (Stoner: 3300-4800)
Ni: 630 (Stoner: 1700-2900)

M=M0–aT2 (exp: T3/2)

M=b(Tc-T)1/2 (exp: (Tc-T)β

1/χ α T2-Tc
2 (exp: T-Tc)

More on Hubbard model and itinerant magnetism: next talk ! (M. Lavagna)



There are few exact results for the Hubbard model:

Stoner criterion for ferromagnetism:   1-Uρ(εF) < 0  ?
- U cannot be too large (screening effects)

-But almost all these exact results do not give a ferromagnetic

ground state, even for large U (see also the arguments given by T. 

Dietl)

Orbital degeneracy (Hund’s coupling) and s-d interactions are 

very important  for stabilizing ferromagnetism)



Why is mean field not good for large U?

If the number of electrons is small: uniform potential on all sites  

and the electrons density is the same on 

all sites.

However it could be more favorable to « maintain » the electrons far 

from each other, so that they almost not interact . This is not 

described by mean field

In mean field : small 
moments evrywhere

Large U: large moments, well 
separated
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Landau expansion for 2nd order phase transition

Free energy near Tc can be expanded in powers of M:

⇒ magnetization, specific heat, susceptibility above Tc 
can be obtained from F(M,H,T)

- a, b and c can be calculated for each 
model (Heisenberg, Hubbard.... )

- They depend on the microscopic 
parameters: Jij or U and  band structure 

- They depend on temperature



Different situations as a function of the sign of coefficients (c >0)

Magnetization is determined by : 

1) if H=0 and a>0, and b2 -4ac <0: M = 0 (no order parameter)

2)  H=0, a <0 (and b2 -4ac >0):  M0 

Usually Tc is determined by  a(Tc) = 0   ⇒ a = a0 (T-Tc)

And  M(T) = (a0/b)1/2 (Tc-T)1/2

Above Tc: M/H = 1/a =1/a0 (T-Tc) ⇒  Curie Weiss law

3) a > 0 and b2 -4ac >0 : 1st order transition is possible

This may occur if the Fermi level is located in a minimum of DOS



- 1st order transition at Tc: discontinuity of M(T)

- Expansion of F in powers of M is not justified if ΔM is large

- No critical phenomena

a > 0 and b2 -4ac >0 : 1st order transition is possible



1st order transituion under magnetic field: metamagnetism

Occurs if a >0 and b2 -4ac >0 

⇒



Advantages and limitations of mean field approximations

-Simplicity (localized and itinerant systems)
-Simple calculations of thermodynamic properties
-Physical origin of the magnetic order
-1st step to investigate a model. 
-Extension to antiferromagnetism, itinerant models, …..

-At low T: M(T) - M0 ≈ exp(-Δ/kT) instead of Tα (α=2 or 3/2): possible 
corrections if spin waves are included
-Near Tc : critical exponents are not correct
-Overestimation of Tc

-Absence of magnetism above Tc (short range correlations are not included)
-Dimensionality effects not  described: absence of magnetism for d=1, Tc = 0 
for d=2 (Heisenberg case)
-Size effect : MF predicts magnetic order in finite systems



Estimation of TC

Mean field: kBTC = zJ 

Real Tc is always smaller (event 0 for some models)

Tc for the Ising model:

Mean field is better if z is large!



Magnetism at finite temperature: molecular field, 
phase transitions

-The Heisenberg model in molecular field approximation: ferro, 
antiferromagnetism. Ordering temperature; thermodynamics

- Mean field for itinerant systems

- Landau theory of phase transitions

- Beyond mean field:
critical exponents
spin waves
Dimensionality effects: absence of phase 

transition in 1D and 2D models 
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At low temperature: thermal variation is dominated by spin waves

Collective excitations of magnetic moments: 

Ground state:                                     ↑↑↑↑↑…. 
Spin wave: linear combination of :  ↑↑↓↑↑  
This is not an eigenstate : Si

+Sj
- induces correlated spin flips

Energy of spin waves: E(k) = hω(k) = 2S(I(0) – I(k))
)rr(ik

ij
ji

jie)r-r(I=)k(I -∑  

k = 0 k = π/a
Spin waves excitations: low 
energy  cost



At low k:  E(k) ≈ 2zJ ( 1 – (ka)2/2)

In antiferromagents: spin wave energies 
E(k) α sin (ka)

⇒ in a ferromagnet: magnetization   M(T)/M0 = 1 – AT3/2

in antiferromagnet:  1- AT2

If gap in the spin wave spectrum (i.e. anisotropy), behavior is 
different: exp(-∆/T)

Magnetization at low T : M(T) = M0 – number of excited spin waves

∑∑
−

=><=
k

T/)k(E
k

ksw 1e
1  nN



Spin waves also exist in itinerant 
ferromagnets:

2 types of excitations: 
-Stoner excitations: transition from a 
-filled ↑ state to an empty ↓ state: gap ∆0

at q=0; continuum at q ≠ 0
-Collective excitations: spin waves

Magnetic 
excitations in Ni 
(∆0≈100meV)

Spin waves: talk by W. Wulfheckel on Monday 7th
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Spatial  spin fluctuations in Landau – Ginzburg model

Near Tc: large fluctuations of M.

M(r) = M0 + m(r)

Small fluctuations can be included in the free energy: 

<∣m(q)∣2> ~ kBT/(gq2 + a+ 3bM0
2)

Fluctuations of small q are large 

Above Tc: M0 = 0 : caracteristic length ζ ~ q-1  ~ (g/a)1/2   ~  (Tc-T)-1/2

<∣m(q)∣2> ~ kBT/(q/ζ)2 + 1)

Caracteristic length diverges at Tc: critical fluctuations



Why a                          contribution?

If variations of M(r)  is « smooth »: 

SiSj = S2 cos (θi – θj) ≈ S2(1 – (θi – θj)2/2)

Contribution to exchange energy: 

J(Ri – Rj)S2/2 (θi – θj)2 ≈ A (dθ/dr)2 in the continuum limit

If Si = S(cosθi , sinθi , 0), then

The                 is justified if spatial fluctuations are small 

Fourier transform:  

Si Sj

Integration over r: only q=q’



Correlation length can be observed with neutron scattering: 

χ(q) ~ <|m(q)|2>/kT  through the fluctuation-dissipation theorem

<∣m(q)∣2> ~ kBT/(q/ζ)2 + 1)

Above Tc: width of  χ(q)  is ≈ ζ -1 ⇒ measure of the correlation 

length ζ : direct access to ζ(T)



Validity of Landau Ginzburg expansion

The is neglected. This is valid as long as

If  <∣m(q)∣2> ~ kBT/(gq2 + a+ 3bM0
2) , 

This leads to the Landau- Ginzburg criterion fot the validity of 

Landau expansion:   

If Tc is small , Landau expansion is not valid. Quantum fluctuations 

become more important than thermal fluctuations 

⇒ Quantum critical point (QCP)
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Some generalities on phase transitions and critical phenomena

-Liquid-solid transition:  spontaneous 

symmetry breaking  at Tc

-Order parameter (spatial)
-A liquid has more symmetries as a solid: 

complete translational and rotational invariance

-Para-ferromagnetic transition is similar



Different types of phase transitions: 



2nd order  phase transitions:

- Order parameter below Tc

- divergence of some thermodynamics quantities

if t = (T-Tc)/Tc, and  h = μH/kTc

values in M. F. approximation

M(T) ~ tβ (h=0) β=1/2

M(h) ~ h1/δ (t=0) δ = 3

χ(T) ~ t-γ γ = 1

ζ(T) ~ t-ν ν = 1/2

C(T) ~ t-α α = 0

S(k) ~ k-2+η (t=0)

………



Critical exponents
they depend on 

-the type of interactions (Heisenberg, X-Y, Ising…)
- the dimensionality of the system

γ-
c

β
c )T-(T(T)χ  ,  )T-T()T(M ∝∝∝

Several relations between the critical exponents:

α+2 β+γ=2,    γ= β(δ – 1)….. 

D=1 D=2 D=3 Mean field

Heisenberg

No ordering

β = 036 

γ = 1.39

X-Y γ = ∞

Kosterlitz- Thouless

β = 0.35 

γ = 1.32

β = 1/2 

γ = 1

Ising Tc = 0

χ ∼ exp(-2J/T)

β = 1/8 

γ = 7/4 

β = 0.32 

γ = 1.24



critical exponenent β in thin Ni films on W: at 6 monolayers 

transition from 2- to 3- dimensional behavior

Critical exponents depend on the dimensionality

(K. Baberschke)
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Phase transitions and  low dimensionality

Li2VO(Si,Ge)O4

NaV2O5



Magnetic properties of 1-dimensional and 2-
dimensional spin systems  (⇒ workshop Tuesday 8th)

-Models calculations

-Heisenberg spins: no magnetic order in 1D and 2D and T > 0 (Mermin-
Wagner theorem)

Spin waves argument:

Magnetization at T0: M(T) = M(0) – NSW , with NSW = number of excited 
spin waves

If ε(k) = ck2 : integral is divergent for d=1 and d=2 (for d=3: T3/2)

dk
1)T/exp(

kN
1d

SW ∫ −ε
∝

−

No long range magnetic ordering for Heisenberg spins with 
short range interactions in 1-D and 2-D at T>0



Qualitative argument for the absence of ordering in 1D and 2D

Fluctuations in Landau theory: 

⇒ 

In 1D and 2D the integral is divergent near  TC: fluctuations become 

larger than  M0. No long range magnetic ordering at T0
(Mermin-Wagner theorem)



Heisenberg spins with anisotropy

Uniaxial anisotropy: 

easy axis: K > 0: spin wave gap α K

Variation of magnetic moment at T ≠ 0: M(T)-M(0) = NSW

In 2D; no divergence of NSW: at low T 

Easy plane anisotropy: K<0  

No spin gap; NSW is divergent at finite T. Order at T=0?

Anisotropy may stabilize ferromagnetism  in 2-D systems
→ surfaces and thin films

2z
iKS−

[ ]K)q(J)0(JS2)k( +−=ε







 −∝

T
AexpTNSW

kK2Dk(Dk)k( 22 ∝+=ε



Examples of 2D systems:

- Compounds with in-plane interactions >> interplane interactions

examples: La2CuO4….

- Ultrathin films : 2d character if - d< 2π/kF     0.2 -2 nm
- d<exchange length: depends on the 
nature of exchange: 0.2 – 10 nm

- Surfaces of bulk materials

- Superlattices F/NM: interlayer interactions



Reduction of Curie temperature

Tc for Co thin films
Magnetization of Ni films

In 2D: - no order if no anisotropy (spin 
waves divergence)

- with anisotropy: reduced Tc
(reduction of nb of nearest neighbors 
Tc α zJS(S+1)  + spin wave effects)

M(T) for different thickness (theory)



From 3D to 2D behavior: 

- In 3D systems correlation length diverges at Tc:

- Crossover from 2D to 3D when the thickness  d ≈ ξ

- Asymptotic form for Tc:

(Heisenberg: ν= 0.7  Ising: 0.6)

Experimentally: ν ≈ 0.7
Close to Heisenberg

(Gradmann, 1993)



Summary

-Mean field approximation is easy to handle. Allows to compare
easily different types of orderings

-In many cases (3D systems) is gives the correct qualitative
ground state

-Temperature variation:
- at low T: spin waves
- Tc too large, critical exponents not correct

- Problems for low dimension systems
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