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3. The Crystal Field



For free ions:

• Filled electronic shells are not magnetic. A ! and a " electron is paired in each

orbital.

• Only partly-filled shells may possess a magnetic moment.

• m = - gµB J/!.   J is the total angular momentum quantum number given by

Hund’s rules.    (This must be modified for ions in solids.)

• Orbital angular momentum for 3d ions is quenched.  The spin-only magnetic

moment is m = - (gµB S/!), where g=2.

• Certain crystallographic directions become easy axes of magnetization-

magnetocrystalline anisotropy.

Summary so far



#(Co2+) = -272 K



4f ions

J is a good quantum number



3d ions

S is a good quantum number



3.1 The crystal field interaction 

Hi = H0   + Hso + Hcf   + HZ

Coulomb interactions |L,S$

spin-orbit interaction #L.S  |J$

Zeeman interaction gB.JµB/!   |MJ$
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As metallic atoms, the
transition metals occupy
one third of the volume of
the rare earths. As ions
they occupy less than one
tenth.



 

Roct = (21/2 -1)rO = 58 pm Rtet = ((3/2)1/2 - 1)rO   = 0.32
pm

3.1.1 Ionic structures - oxides



 

122Gd3+60Ni3+  3d769Ni2+  3d8

136La3+61 (56)Co3+ 3d675 (65)Co2+ 3d7

119Y3+64Fe3+  3d578 (61)Fe2+   3d6

149Pb2+65Mn3+ 3d483Mn2+ 3d552Fe3+  3d5

161Ba2+62Cr3+ 3d342Al3+

144Sr2+64V3+  3d253Mn4+ 3d360Zn2+

134Ca2+67Ti3+ 3d155Cr4+  3d253Mg2+

pm12-fold

substitutional

pm6-fold

octahedral

pm6-fold

octahedral

pm4-fold

tetrahedral

Cation radii in oxides: low spin values are in parentheses.

The radius of the O2- anion is 140 pm



3.2 One-Electron States - d electrons

Crystal fields and ligand fields



s, p and d orbitals in the crystal field



Orbitals in the crystal field
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Notation: a or b denote a non-degenerate electron orbital, e a twofold degenerate orbital and t a

threefold degenerate orbital. Capital letters refer to multi-electron states. a, A are non-degenerate

and symmetric with respect to the principal axes of symmetry (the sign of the wavefunction is

unchanged), b and B are antisymmetric with respect to the principal axis (the sign of the

wavefunction changes). Subscripts g and u indicate whether the wavefunction is symmetric or

antisymmetric under inversion. 1 refers to the mirror planes parallel to a symmetry axis and 2 refers

to diagonal mirror planes.

t2

e



Crystal-field theory regards the splitting of the 3d orbitals in octahedral oxygen, for

example, as an electrostatic interaction with neighbouring point charges (oxygen anions).

In reality the 3d and 2p orbitals of oxygen overlap to form a partially covalent bond. The

oxygens bonding to the 3d metals are the ligands. The overlap is greater for the eg than

the t2g orbitals in octahedral coordination.

The overlap leads to mixed wavefunctions, producing bonding and antibonding orbitals,

whose splitting increases with overlap. The hybridized orbitals are

+ = ,-2p+.-3d

where ,2+.2=1.

For 3d ions the splitting is usually 1-2eV, with the ionic and covalent contributions being

of comparable magnitude

The spectrochemical series is the sequence of ligands in order of effectiveness at

producing crystal/ligand field splitting.

Br-<Cl-<F-<OH-<CO2-
3<O2-<H20<NH3<SO2-

3<NO-
2<S2-<CN-

The bond is mostly ionic at the beginning of the series and covalent at the end.

Covalency is stronger in tetrahedral coordination but the crystal field splitting

is
/tet=(3/5)/oct



The 3d shell typically has integral occupancy 3dn. The 3d band is narrow, and lies in
the 2p(O) -4s(M) gap 2 – 6 eV. The Fermi level lies in the d-band.

Is the oxide a conductor or an insulator ?

Mott pointed out that for a metal, it is necessary

to have some ions in 3dn+1 and 3dn-1 states. This

is only feasable if the bandwidth W is wide

enough. i.e. W > Umott where Umott is (ionization

energy - electron affinity). If W < Umott we have a

Mott insulator

       !                      "

t2g

eg

/

 

3.2.1 Electronic structure of oxides

Example NiO



3.2.2 One-electron energy diagrams



Lower symmetry





3.2.2 The Jahn-Teller effect

•A system with a single

electron (or hole) in a

degenerate level will tend to

distort spontaneously.

•The effect is particularly

strong for d4 and d9 ions in

octahedral symmetry (Mn3+,

Cu2+) which can lower their

energy by distorting the crystal

environment- this is the Jahn-

Teller effect.

•If the local strain is !, the

energy change is

0E=-A!+B!2.

 where the first term is the

crystal field stabilization

energy and the second term is

the increased elastic energy.

•The Jahn-Teller distortion

may be static or dynamic.



3.2.3 High and low spin states

An ion is in a high spin state or a low spin state depending on whether the Coulomb

interaction UH leading to Hund’s first rule (maximize S) is greater than or less than the

crystal field splitting "cf.

"cf.

"cf.

UH > "cf. UH < "cf.



3.3 Many-electron States

The 3d ions are in an S, D or F state, depending on

whether L - 0, 2 or 3



The 3d shell typically has integral occupancy 3dn. The 3d band is narrow, and lies in
the 2p(O) -4s(M) gap 2 – 6 eV. The Fermi level lies in the d-band.

 

3.3.1 Electronic structure of oxides

Example NiO

3A2g

3T2g

3T1g

3F





These show the splitting of the ground state and higher terms by the crystal field.

The high-spin 1 low-spin crossover is seen. Diagrams shown are for d-ions in octahedral

environments.

Tanabe-Sunago diagrams

Redrawn, with the ground state at zero energy



Matching the optical absorption spectrum of Fe3+-doped Al2O3 with the calculated

Tanabe-Sunago energy-level diagram to determine the crystal-field splitting at octahedral

sites.



Note the similarities between the Tunabe-Sunago diagrams for d2 and d7.

The differences are associated with the possible low-spin states for d7 (e.g Co2+).





3.4 Crystal Field Hamiltonian



3.4 Crystal Field Hamiltonian

Charge distribution of the ion potential created by the crystal

structural parameters



The approximation made so far is terrible.It ignores the screening of the

potential by the outer shells of the 4f ion for example, and also the covalent

contribution. But it captures the symmetry of the problem. We proceed with it,

but treat the crystal field coefficients as empirical parameters.

It is useful to expand the charge distribution of a central 4f ion in terms of the

2n-pole moments of the charge distribution, n = 2, 4, 6

The quadrupole moment

The hexadecapole moment

The 64-pole moment

Rare earth

quadrupole

moments



3.5 Single-ion anisotropy

Single-ion anisotropy is due to the electrostatic crystal field interaction +
spin-orbit interaction. The 4f charge distribution &0 (r) interacts with the

crystal field potential 'cf(r) to stabilizes some particular orbitals; spin-orbit

interaction -#L.S then leads to magnetic moment alignment along some

specific directions in the crystal.

The leading term in the crystal field interaction is

where A2
0 is the uniaxial second-order crystal field parameter, which

described the electric field gradient created by the crystal which interacts

with the 4f quadrupole moment.

The crystal field interaction can be expressed in terms of angular

momentum operators, using the Wigner-Eckart theorem

Stevens

operatorscf coefficient



Here       and 2n is different for each 4f ion, proportional to the

2n-pole moment

Q2 = 2 223r4f
2$  Q4 = 8 243r4f

4$  Q6 = 16 263r4f
6$

An
m ~ 4nm parameterises the crystal field produced by the lattice.

NB.  Q2 !"0 for J (or L) ! 1

Q4 !"0 for J (or L) ! 2

Q6 !"0 for J (or L) ! 3

The Stevens operators are tabulated, as well as which ones feature in

each point symmetry

e.g. The leading term in any uniaxial site is the one in O2
0

The complete second order (uniaxial) cf Hamiltonian is





The cf Hamiltonian for a site with cubic symmetry is

For 3d ions only the fourth-order terms exist; (l = 2)

Kramer’s theorem

It follows from time-reversal symmetry that the cf energy levels of any ion with

an odd number of electrons, and therefore half-integral angular momentum,
must be at least 2-fold degenerate.  These are the |±MJ$ Kramers doublets.

When J is integral, ther will be a |0$ singlet (with no magnetic moment) and a

series of doublets.
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4. Magnetism of free electrons



4.1  Localized and delocalized electrons

LOCALIZED MAGNETISM        DELOCALIZED MAGNETISM
Integral number of 3d or 4f electrons        Nonintegral number of unpaired spins
on the ion core; Integral number of unpaired spins;     per atom.
Discreet energy levels.        Spin-polarized energy bands with 

        strong correlations.
Ni2+ 3d8 m  = 2 µB Ni  3d9.44s0.6   m = 0.6 µB

                        

-! exp(-r/a0)              - ! exp(-ik.r)

Boltzmann statistics Fermi-Dirac statistics

4f metals 
!

localized electrons
4f compounds localized electrons
3d compounds localized/delocalized electrons
3d metals delocalized electrons.

Above the Curie temperature, neither localized nor delocalized moments disappear, they just
become disordered in the paramagnetic state, T > TC.

3d

3d
9

8

r

!

!



Cyclotron orbits

Free electrons follow cyclotron orbits in a magnetic field.
Electron has velocity v then it experiences a Lorentz force

                                    F = -ev 5 B

The electron executes circular motion about the direction
of B (tracing a helical path if v|| 6 0)

Cyclotron frequency     fc=v7/2)r

         fc = eB/2)me

Electrons in cyclotron orbits radiate at the cyclotron
frequency

Examples:  — ESRF
   — Microwave oven



 

B  

µ  

Bµ!= "  

Torque ! cause µ to precess about B with the Larmor frequency
e

eB

m
# =  

 

m

# = m x B

Larmor precession

Bound electrons undergo Larmor precession.
If an electron is constrained to an orbit it has an associated

magnetic moment m = 4l   which experiences a torque

                   # = m 5 B = dl/dt

perpendicular to the direction of m.
Thus m precesses about the applied field direction at the
Larmor frequency

                          fL= 4B/2)

Since 4e = -(e/me), the cyclotron and Larmor frequencies

are the same for electrons;  28.0 GHz T-1



5.2 The free electron model

Hamiltonian for the electrons confined in a box of sides L.

                                   H = p2/2me + V(r)

Schrodinger’s equation:     -(!2/2me)8
2- = (E-V)-

Solutions are free-electron waves          - = L-3/2exp (ik.r)

Momentum:  p = -i!8= !k                Energy:     E = !2k2/2me

Allowed values  ki = ±2)ni/L,    ni is an integer

Simplest model for conduction electrons in a solid. Works well for weakly-
correlated electrons in  broad bands, especially s-band metals such as copper
3d104s1

k

E



2 electrons per state/point in k-space  (spin degeneracy).

Each state occupies a volume (2)/L)3

N electrons occupy a volume of (N/2)(2)/L)3

At T = 0 electrons occupy lowest available energy states: Highest occupied
states are at the Fermi energy.

"F = !2kF
2/2me

Occupied states fill a sphere of volume:  (4/3))kF
3 = 2N(2)/L)3

 Fermi wavevector kF = (3)2n)1/3 

(n = N/L3 is electron density)

The spherical Fermi surface of radius kF separates the
 occupied and unoccupied states.

o o o o o o o o o

o o o o o o o o o

o o o o o o o o o

o o o o o o o o o

o o o o o o o o o

o o o o o o o o o

o o o o o o o o o

kx

ky

kF



Density of states;      !",#($) = (1/2)dn/d$ = (1/4%2)(2me/#
2)3/2 $1/2       for either spin.

Density of states at the Fermi Level:

! ",#($F) = 3n/4$F

Electrons moving in a crystalline solids’s lattice
experience a periodic potential.

Bloch’s theorem:    &(r) ' exp(ik.r)uk(r)

          where uk(r) has the periodicity of the lattice.

If the Bragg condition 2k.G = G2  is satisfied, reflection

of the electron waves at the Brillouin zone boundaries

leads to sharp structure and gaps in the DOS

The free electron model can be extended to systems

with non-parabolic DOS by defining an effective

electron mass     me*=#
2(" 2$/(k2)-1         which

represents the effect of the lattice potential on the

electrons.
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EF ! 6 eV

vF ! 1.4 106 m s-1

kF ! 1.2 1010 m-1



5.3 Spin moment and susceptibility - band electrons

The calculation for metals proceeds on a quite
different basis. The electrons are indistinguishable
particles which obey Fermi-Dirac statistics. They are
not localized, so Boltzmann statistics cannot be
applied. The electrons have s = 1/2, m = µB. They

partly-fill some energy band up to the Fermi level EF.

A rough calculation gives the susceptibility as follows:

  9 = (N! - N")µB/H

    ! 2[!(EF)µ0gµBH]µB/H where !(EF) is the density of states at the Fermi level

for one spin direction.
   9Pauli ! 2µ0 !(EF)µB

2

This is known as the Pauli susceptibility. Unlike the Curie susceptibility, it is very small, and
temperature independent.
The density of states N(EF) in a band is approximately N/2W, where W is the bandwidth
(which is typically a few eV). Comparing the expression for the Pauli susceptibility with that
for the Curie susceptibility 9curie = µ0NµB

2/kBT, we see that the Pauli susceptibility is a factor

kBT/W smaller than the Curie susceptibility . The factor is of order 100 at room
temperature. 9Pauli is of order 10-5.

B = 0

B

±µBB

E

"    !      "    !

E

EF





Some metals have narrow bands and a large density of states at the
Fermi level; In this case it is possible for the band to split
spontaneously, and for ferromagnetism or antiferromagnetism to
appear.

Ni

0.6ferriNi

1.7ferroCo

2.2ferroFe

1.0afMn

0.6afCr

m(µB)ordermetal

Strong ferromagnets like Co or Ni have all the states in the ! d-band

filled (5 per atom).

Weak ferromagnets like Fe have both ! and " d-electrons at the EF.



!($) : $1/2

!($) = constant

!($) : $-1/2

Discreet levels

3-d solid



5.4 Landau diamagnetism

Free electron model was used by Landau to calculate the orbital

diamagnetism of conduction electrons. The result is:

exactly one third of the Pauli susceptibility, and opposite in sign.

The real band structure is taken into account in an approximate way by

renormalizing the electron mass. Replace me by an effective mass m*

Then 9L = -(1/3)(me/m*) 9P

In some semimetals such as graphite or bismuth, m* can be   ' 0.01 me, hence

the diamagnetism of the conduction electrons may sometimes be the dominant
contribution to the susceptibility. (9L = -4 10-4 for graphite)



paramagne

ts
diamagnets

Susceptibility of the elements





5.5 Quantum oscillations

Let B = Bz,  A = (0, xB, 0), V(r) = 0 and m = m*

Schrodinger’s equation

;c =  eB/m*,   x0 = -!ky/eB   E’ = E - (!
2/2m)kz

2

  

The motion is a plane wave along Oz, plus a simple

harmonic oscillation at fc in the plane.



 

  

When a magnetic field is applied, the states in the Fermi sphere collapse

onto a series of tubes. Each tube corresponds to one Landaue level (n -

value). As the field increases, the tubes expand and the outer one

empties periodically as field increases. An oscillatory variation in 1/B2 of

magnetization (de Haas - van Alphen effect) or of conductivity (Shubnikov

- de Haas effect) appears.

From the period, it is possible to deduce

the cross section area of the Fermi surface

normal to the tubes.


