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3. The Crystal Field



Summary so far

For free ions.:

e Filled electronic shells are not magnetic. A T and a | electron is paired in each
orbital.

 Only partly-filled shells may possess a magnetic moment.

e m = -gugJ/h. Jis the total angular momentum quantum number given by
Hund’s rules. (This must be modified for 1ons in solids.)

e Orbital angular momentum for 3d ions is quenched. The spin-only magnetic
moment is 722 = - (gup S/h), where g=2.

e Certain crystallographic directions become easy axes of magnetization-
magnetocrystalline anisotropy.
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4f ions

Table 4.6. The 4 f ions. The paramagnetic moment m.z and the
saturation moment m, are in units of u,
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J is a good quantum number
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3d ions

Table 4.7. The 3d ions. me is in units of ug

m = m =
2 S L 4 g sfIUFD s fSCFD m
1 TV L 2 1 4 155 1.73 1.7
2 Tizt, V3+ 1 3 2 -§- 1.63 2.83 2.8
3 wreot 103 1 % 078 3.87 38
4 Cet,Mn*t 2 2 0 4.90 4.9
s Mo Rt § 0 f 2 592 5.92 5.9
6 Fe*t, Co’t 2D 4 % 6.71 4.90 54
7 Co*,Nit* 21 3 2 & 663 3.87 4.8
8  Ni i 3 4 3 5% 2.83 32
9  Cutt ST e 1.73 1.9

S is a good quantum number



3.1 The crystal field interaction

H;= FHy + T, + Iy
/

Coulomb interactions |L,S)

spin-orbit interaction AL.S |

ion | A Zeeman interaction gB.Jug/h |M))

3d' | Ti*t | 124 4f1 | Ce3* | 920

3d2 | Tiz+ | 88 472 | Pr3* | 540 | Crystal field interaction [p,(r)p.(r)dsr

3d3 | Vv 82 4f3 | Nd3* | 430

3d* | Cr2* 85 4f° | Sm3* | 350

3d® | Fe?* | -164 4f | Tb3* | -410

3d7 | coz | -272 | |4 |Dy** | -550 Iy H s H H,

3d® | Ni2* | -493 410 | Ho3* | -780

- 4 2_103 4
2 e 4170 1134 | 1-510* | 102-10 10 1

462 | Tm3* | -1900 4f |1-610° |1-5103 ~310% |1

4513 | Yb3* | -4140




Co

As metallic atoms, the
transition metals occupy
one third of the volume of
the rare earths. As ions
they occupy less than one
tenth.
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|
3.1.1 lonic structures - oxides

Rt = ((3/2)'2 - )rg =032
pm




Cation radii in oxides: low spin values are in parentheses.

4-fold pm 6-fold pm 6-fold pm 12-fold pm

tetrahedral octahedral octahedral substitutional

Mg?* 53 Cr#* 3d? 55 Ti3* 3d’ 67 Ca?* 134

Zn?* 60 Mn#*+ 3d3 53 V3* 3d? 64 Sr2* 144

Al3* 42 Cr3* 3d?® 62 Ba?* 161

Fe3* 3d° 52 Mn2* 3d° 83 Mn3* 3d* 65 Pb2* 149
Fe2* 3d° 78 (61) | Fed3* 3d° 64 Y3+ 119
Co?* 3d’ 75 (65) | Co3*3dS 61(56) |La3* 136
Ni%+ 3d® 69 Ni3+ 3d’ 60 Gd3* 122

The radius of the O% anion is 140 pm




3.2 One-Electron States - d electrons
| Crystal fields and ligand fields

The most common coordination for 3d ions is 6-fold (octahedral) or 4-fold (tetrahedral). Both have cubic
symmetry, if undistorted. The crystal field can be estimated from a point-charge sum.

Octahedral and tetrahedral sites.
To demonstrate quenching of orbital angular momentum, we consider the 1 = 1 states Y% @'y

corresponding tom, =0, £1.

Pv = R(r) cos 6

P! = R(r) sin 8 exp {10}
The functions are eigenstates in the central potential V(r) but they are not eigenstates of 7—[30{. Suppost
the oxygens can be represented by point charges q at their centres, then for the octahedron,

H  =eV = Dq(x* +y* +2° - 3y222 -322x2 -3x2y?)

where D = e/4pe a‘. But y=! are not eigenfunctions of V; e.g fp,"V pidV# §,, where ij=-1,0, 1.
We seek linear combinations that are eigenfunctions, namely

Y’ = R(r)cosB =zR(r)=p,
(IN2)p! +¢ )= R’(r)sinBcosd = xR(1) =p,



S, p and d orbitals in the crystal field
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Orbitals in the crystal field

hybridization
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Note that the z-component of angular momentum; 1b = ihd/d¢ is zero for these wavefunctions. Hens
the orbital angular momentum is quenched.

The same applies to 3d orbitals; the eigenfunctions there are

d. = (V)W -y?) = R’(r)sin?0sin2¢ = xyR(r)
d\;. = (1/1/2)(-14‘)' -l = R’(r)sinBcosBsing = yzR(r) 5, orbitals
d;"\ = (l/\/2)(lpl +¢!) = R’(r)sinBcosBcosp = zxR(r) ‘

n

d2 2=(IV2)2+92) = R’(r)sinBcos2¢ (x2-y2)R(r) e, orbitals

d, 2 2=10° R’(r)(3cos?0 - 1) = (3z2-r2)R(r)

The three p-orbitals are degenerate in a e

cubic crystal field, whether octahedral 1 de,2d2 ¢ L =t

or tetrahedral, whereas the five d-orbitals — | d, d)u d,,

split into a group of three t, and a group Py Py P, 10Dq GDq

of two e_ orbitals ¢ e ©
. _— do2.2d;2

oct / tet d d\l’ d iez

Notation: a or b denote a non-degenerate electron orbital, e a twofold degenérate orbital and 7 a
threefold degenerate orbital. Capital letters refer to multi-electron states. a, 4 are non-degenerate
and symmetric with respect to the principal axes of symmetry (the sign of the wavefunction is
unchanged), b and B are antisymmetric with respect to the principal axis (the sign of the
wavefunction changes). Subscripts g and u indicate whether the wavefunction is symmetric or
antisymmetric under inversion. 1 refers to the mirror planes parallel to a symmetry axis and 2 refers
to diagonal mirror planes.



Crystal-field theory regards the splitting of the 3d orbitals in octahedral oxygen, for
example, as an electrostatic interaction with neighbouring point charges (oxygen anions).
In reality the 3d and 2p orbitals of oxygen overlap to form a partially covalent bond. The
oxygens bonding to the 3d metals are the /igands. The overlap 1s greater for the e, than
the t,, orbitals in octahedral coordination.

The overlap leads to mixed wavefunctions, producing bonding and antibonding orbitals,
whose splitting increases with overlap. The hybridized orbitals are

q) = Oup2p+[3w3d
where a2+p2=1.
For 3d ions the splitting is usually 1-2eV, with the ionic and covalent contributions being
of comparable magnitude

The spectrochemical series is the sequence of ligands in order of effectiveness at
producing crystal/ligand field splitting.

Br'<ClI'<F"'<OH<C0?%";,<0%<H,0<NH,<S0?%",<NO",<S?"<CN"
The bond 1s mostly 10onic at the beginning of the series and covalent at the end.

Covalency is stronger in tetrahedral coordination but the crystal field splitting
1s
Aei=(3/5)A

oct



3.2.1 Electronic structure of oxides

The 3d shell typically has integral occupancy 3d". The 3d band is narrow, and lies in
the 2p(O) -4s(M) gap 2 — 6 eV. The Fermi level lies in the d-band.

Is the oxide a conductor or an insulator ?

o 4s(T) '\
g \
A
by =
: L e | u
Mott pointed out that for a metal, it is necessary G A |
to have some ions in 3d"*! and 3d™! states. This tyg =

is only feasable if the bandwidth W is wide
enough. i.e. W > U
energy - electron affinity). If W < U

ore Where U _is (ionization

ore WE have a

Mott insulator

Example NiO



3.2.2 One-electron energy diagrams

dxl y2? d72
7 7 Y
dx;. ’ d;.-z’ dx;r
— I:c
dw’ dw’ du 3'{5An
2/5A =0
2154, A
M == I
A!
A
: 3/5A, 24sA,
3/5A.
C v c
dxl‘ y2° drl = E tEg
dxy’ d;;x’ dx')
Y . 4 e,
dt.'-‘ vyt dxl
cubic tetrahedral spherical octahedral




Lower symmetry

As the site symmetry is reduced, the degeneracy of the one-electron
energy levels is raised. For example, a tetragonal extension of the
octahedron along the z-axis will lower p, and raise p, and p,. The effect
on the d-states is shown below. The degeneracy of the d-levels in
different symmetry is shown in the table.

P r

-‘
f A\

P,

The effect of a tetragonal distortion of octahedral symmetry on the
one-electron energy levels.

The splitting of the 1-electron levels

o I | Cubic | Tetragonal | Trigonal | Rhombohedral
in different symmetry 1 1 1 " "
S
p |2 3 1,2 1,2 L1,1
d |3 2,3 1412 1,2,2 1,111
f 4133 11,22 11122 1,1,1,1,1,1,1
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3.2.2 The Jahn-Teller effec

z

*A system with a single
electron (or hole) in a
degenerate level will tend to
distort spontaneously.

*The effect is particularly
strong for d* and d° ions in
octahedral symmetry (Mn3",

| Cu?*) which can lower their

Z P z energy by distorting the crystal
environment- this is the Jahn-
Teller effect.

[f the local strain is &, the
: _ . _ energy change is
T D SE=-AE+B&2.
where the first term is the

3y crystal field stabilization
—_— energy and the second term is
B — the increased elastic energy.

R — 8 *The Jahn-Teller distortion
may be static or dynamic.

« a



3.2.3 High and low spin states

An ion is in a high spin state or a low spin state depending on whether the Coulomb

interaction U, leading to Hund’s first rule (maximize S) is greater than or less than the
crystal field splitting A~

Consider a 3d® ion such as Fe’".

P

~

U, > A gives a high-spin state, S = 2 e.g. FeCl, U, < A, jives a low-spin state, S = 0 e.g. Pyrite FeS,



3.3 Many-electron States

The 3d ions are in an S, D or F state, depending on
whether L -0, 2 or 3



3.3.1 Electronic structure of oxides

The 3d shell typically has integral occupancy 3d". The 3d band is narrow, and lies in
the 2p(O) -4s(M) gap 2 — 6 eV. The Fermi level lies in the d-band.

3F 3T

Example NiO



In insulators, the electrons in an unfilled shell interact
strongly with each other giving nse to a series of sharp
energy levels which are determined by the action of the
crystal field on the orbital terms of the free atom. The
spacing of theses levels may be determined by
spectroscopy, and the crystal-field determined.

Orgel Diagrams
<« A 0 A, —>
These diagrams show the effect of a cubic crystal field d',d octahedral ¢ d octahedral
on the Hund's rule ground state term. Since a half-filled o Ut o)
shell has spherical symmetry, the cases ¢" and d°'" are
equivalent. Also, since a hole is the absence of an T
electron, the cases d” and d'%" are related. 7, : £,
. :
’ D
5
A, A
E,
<« A 0 A
=0 0 > d',d' octahedral d', & octahedral
{d', & tetrahedral) (d, d' tetrahedral)




A4 -~

These show the splitting of the ground state and higher terms by the crystal field.
The high-spin — low-spin crossover is seen. Diagrams shown are for d-ions in octahedral
environments. £/t ' gy, Are A

dé 2
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crystal field splitting \B

Redrawn, with the ground state at zero energy



absorption
' coetticient (cm~1)

40 30 20 10
1

Q.
(o=
30,000

> (13,07, )2

wavenumber, {cm 1)
200.0(X)

10,000

\
i
I
]

6S l |
crystal field splitting

Matching the optical absorption spectrum of Fe**-doped Al,O, with the calculated
Tanabe-Sunago energy-level diagram to determine the crystal-field splitting at octahedral
sites.
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Note the similarities between the Tunabe-Sunago diagrams for d? and d’.

The differences are associated with the possible low-spin states for d’ (e.g Co?").

m
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For Cr*" in ALLO;, the ¢f parameter Da/B is 2.8



3.4 Crystal Field Hamiltonian

The electrostatic interaction of the ionic charge distribution pg(r) with the potential ¢ created by the rest of the crysta
gives rise to the crystal field splittings. It is also the source, via spin-orbit coupling, of magnetocrystaliine anisotropy.

E=J . p(r)dr
where @.Ar) = -(eldney) [ {p(R) / |R - i} dR
The anisotropy energy is therefore
E,(r) = -(ef4neq) S {p(r8¢) p(R) / R - r}dr dR
Both the charge distribution p(r) and the potential @_{r) can be expanded in spherical harmonics.

Using the Wigner-Eckart theorem, it is possible to write the corresponding crystal-field Hamiltonian in terms of angular
momentum operators |, ). J, |2 which s a particularly useful way to find the energy-levels (eigenvalues). The Hamiltonian
matrix is written in an M, or M, basis for the 3d transition elements or 4f rare earths respectively. In concise form

e n m m
H y= 2202 462m=g 37O

Crystal field parameters /79.\(r'*)A,f" Stevens operators

Stevens coefficients Crystal field coefficients
In a site with uniaxial anisotropy, the leading term is 715(,]: B,° 0;_3‘ The Stevens operator o 2is {31, - Jg+ 1)}

=80 320



3.4 Crystal Field Hamiltonian

Her = [ po(r)e(r)d’r.

Charge distribution of the ion potential created by the crystal

(pc}_(’.) - f p(r) d3l".

drey|r — r|

Here 1/|r — r’| can be expanded spherical harmonics using spherical polar
coordinates r = (r,0,¢)and r' = (r', 0’, ¢'):

] ] & 4 ran n
i e 25, ‘_l"m Y—m 9!~ ’ Ym 9‘ :
lr —r'| r’,?;:o(2n+l)(r') ,,Z.:.n(‘ Vi e O, )
Hence
: : (> @) n
Qp(r0.0)=3" > r'v.,Y, (0.9),
n=0m=—n
where

4n / PEN=N)"Y"(0,9) 5.,
y"l?l — d F.

(2n + 1) rm+l

structural parameters



The approximation made so far is terrible.lt ignores the screening of the
potential by the outer shells of the 4f ion for example, and also the covalent
contribution. But it captures the symmetry of the problem. We proceed with it,
but treat the crystal field coefficients as empirical parameters.

It is useful to expand the charge distribution of a central 4f ion in terms of the
2"-pole moments of the charge distribution,n =2, 4, 6

The quadrupole moment
0, = [/.)4_,,(1' )(3cos*0 — Drd’r.

The hexadecapole moment

Qs = f P4 (r)(35 cos* @ — 30cos?0 + 3)yr*d'r,
The 64-pole moment

Q6 = /p £(r)231 cos® @ — 315cos* 0 + 105 cos® 6 — 5)r°d’r.

Rare earth o ﬁ§| )
quadrupole S = R~
moments Pr Nd




3.5 Single-ion anisotropy

Single-ion anisotropy is due to the electrostatic crystal field interaction +
spin-orbit interaction. The 4f charge distribution p, (r) interacts with the
crystal field potential @_(r) to stabilizes some particular orbitals; spin-orbit
interaction -AL.S then leads to magnetic moment alignment along some
specific directions in the crystal.

The leading term in the crystal field interaction is

ea = (1/2)Q2A5(3 cos” 6 — 1),

where A.° is the uniaxial second-order crystal field parameter, which
described the electric field gradient created by the crystal which interacts
with the 4f quadrupole moment.

The crystal field interaction can be expressed in terms of angular
momentum operators, using the Wigner-Eckart theorem

Hep=. ), B, Oy
\

n=0246m=—n,.. M \
Stevens

cf coefficient operators




Here B =0,(r},)A; and 8, is different for each 4fion, proportional to the
2"-pole moment

Q, =2 0,(r,f) Q, =8 0,(ry") Qg = 16 06(r,°)
A M~y . parameterises the crystal field produced by the lattice.

NB. Q, # 0ford (orL)=1
Q, #0forJ(orL)=2
Qg #O0forJ(orL)=3

The Stevens operators are tabulated, as well as which ones feature in
each point symmetry

e.g. The leading term in any uniaxial site is the one in O,°

00—l — i enl

The complete second order (uniaxial) cf Hamiltonian is

H.s =0, ::r_f.’. | [A‘:'(')g 4 _‘4::(‘)5'4«"]



© OOOQ00

Charge distributions of the rare-earth ions. Those with a positive quadrupole moment (8, > 0), italic type
distinguished from those with a negative quadrupole moment (6, < 0) bold type. Note the quarter-shell changes,

R ) —19P
eg Nd** | =91 +3/2
+5/2
+712

1op +1/2

B, <0 B,>0



The cf Hamiltonian for a site with cubic symmetry is

H.p =04(ri) [..43(')2 L Sij*‘*'()i'“"] +06(r ) [AQ()‘; = 21.4‘,;05.{._,]

For 3d ions only the fourth-order terms exist; (I = 2)

Kramer’s theorem

It follows from time-reversal symmetry that the cf energy levels of any ion with
an odd number of electrons, and therefore half-integral angular momentum,
must be at least 2-fold degenerate. These are the |+tM ) Kramers doublets.

When J is integral, ther will be a |0) singlet (with no magnetic moment) and a
series of doublets.
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4. Magnetism of free electrons



4.1 Localized and delocalized electrons

LOCALIZED MAGNETISM DELOCALIZED MAGNETISM
Integral number of 3d or 4f electrons Nonintegral number of unpaired spins
on the ion core; Integral number of unpaired spins;  per atom.
Discreet energy levels. Spin-polarized energy bands with
strong correlations.
Nizt 38 m =2 g 3d° Ni 3d944506  m = 0.6 g
3d 8 E
P 7/
J\ b Vv
r AVAY
=~ exp(-r/a,) P = exp(-ik.r)
Boltzmann statistics Fermi-Dirac statistics
4f metals localized electrons
4f compounds localized electrons
3d compounds localized/delocalized electrons
3d metals delocalized electrons.

Above the Curie temperature, neither localized nor delocalized moments disappear, they just
become disordered in the paramagnetic state, T > T..



Cyclotron orbits

Free electrons follow cyclotron orbits in a magnetic field.
Electron has velocity v then it experiences a Lorentz force

=-evx B

The electron executes circular motion about the direction
of B (tracing a helical path if v, = 0)

Cyclotron frequency  f=v, /27r

C

f. = eB/2mm,

Electrons in cyclotron orbits radiate at the cyclotron
frequency

Examples: — ESRF
— Microwave oven

B

i
'

|

o
>




Larmor precession

Bound electrons undergo Larmor precession.
If an electron is constrained to an orbit it has an associated

magnetic moment m = Yl which experiences a torque
I'=m x B =dl/dt
perpendicular to the direction of m.

Thus m precesses about the applied field direction at the
Larmor frequency

f,.="yB/27

Since Y, = -(e/m_), the cyclotron and Larmor frequencies

are the same for electrons; 28.0 GHz T-!

I'=mxB



5.2 The free electron model

Simplest model for conduction electrons in a solid. Works well for weakly-
correlated electrons in broad bands, especially s-band metals such as copper
3d'%4s!

Hamiltonian for the electrons confined in 2 box of sides L.

H = p?2m_+ V(r)

Schrodinger’s equation:  -(A*2m_)VA) = (E-V)y

Solutions are free-electron waves P = L32exp (ik.r)

Momentum: p = -iAV= hk Energy: E = A?k?/2m,

Allowed values k. = £2nn/L, n. is an integer



2 electrons per state/point in k-space (spin degeneracy).

Each state occupies a volume (2m/L)3
N electrons occupy a volume of (N/2)(2m/L)3

At T = 0 electrons occupy lowest available energy states: Highest occupied
states are at the Fermi energy.

€. = Ak22m,

Occupied states fill a sphere of volume: (4/3)mk:* = 2N(2n/L)3 000000000

Fermi wavevector|k; = (3m?n)'/?

(n = NIL3 is electron density)

The spherical Fermi surface of radius k. separates the

occupied and unoccupied states. \v

The Fermi surface of
copper.



Density of states; Zﬁm(e) = (1/2)dn/de = (1/4112)(2m /h?)3/2 172 for either spin.

Density of states at the Fermi Level:

D . (gr) = 3n/de;

|

3 n/4€|:
s,

Electrons moving in a crystalline solids’s lattice
experience a periodic potential.

Density of states

Bloch’s theorem: |w(r) = exp(ik.r)u,(r)

D

where u,(r) has the periodicity of the lattice.

If the Bragg condition 2k.G = G? is satisfied, reflection
of the electron waves at the Brillouin zone boundaries
leads to sharp structure and gaps in the DOS

The free electron model can be extended to systems
with non-parabolic DOS by defining an effective
electron mass  m_*=h?2(d%e/0k?)" which
represents the effect of the lattice potential on the
electrons.



Table 3.3. Properties of the free-electron gas

Fermi wavevector [T !:Ii'.'.:u','l ’ 1.2 10" m
Fermi velocity v hkpfm 1410 ms™*

Fermi energy by (hkr)*/2m. 9107 J

Fermi temperature T Erfky £54.700 K
Density of states for one spin  D(F ) In /i€y 5 10% m™)!

Pauli susceptibility Xp 2puiD(EF) 1.1 107° -
Hall coefficient I 1/ne 1.010" miCc?
Numerical values are for n = 6 10°° m . Density of states is for one spin.

E-~ 6 eV

I€) = (pE = p)/kaT] + 1)

ve= 1.4 10¢m s’/

ke~ 1.2 1010 m'!



5.3 Spin moment and susceptibility - band electrons

The calculation for metals proceeds on a quite E E
different basis. The electrons are indistinguishable
particles which obey Fermi-Dirac statistics. They are
not localized, so Boltzmann statistics cannot be
applied. The electrons have s = 1/2, 772 = pg. They
partly-fill some energy band up to the Fermi level E..

A rough calculation gives the susceptibility as follows:

B=0
% = (N - Nbpg/H

~ Z[ZiEF)pngBH]pB/H where Z5(EF) is the density of states at the Fermi level
for one spin direction.

Kpaui = 2Hg :D(EF)“BZ

This is known as the Pauli susceptibility. Unlike the Curie susceptibility, it is very small, and
temperature independent.

The density of states N(E;) in a band is approximately N/2W, where W is the bandwidth
(which is typically a few eV). Comparing the expression for the Pauli susceptibility with that
for the Curie susceptibility ¥ ... = HoNHg2/k T, we see that the Pauli susceptibility is a factor

kg T/W smaller than the Curie susceptibility . The factor is of order 100 at room
temperature. . is of order 10-.
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Some metals have narrow bands and a large density of states at the
Fermi level; In this case it is possible for the band to split
spontaneously, and for ferromagnetism or antiferromagnetism to
appear.

Wf \ 1
2: Ni "2
metal |order | M(ug) [ s-Elekfronen 8 -
0 e — ~E:+0
Cr af 0.6 g | 7 .
& 2 d-Et ( I
> | d-Elektronen .
Mn af 1.0 2.l -4
Fe ferro | 2.2 -6 ’ Ni 1"
8t 18
Co ferro 1.7
Ni ferri 0.6

Strong ferromagnets like Co or Ni have all the states in the 1 d-band
filled (5 per atom).

Weak ferromagnets like Fe have both | and | d-electrons at the E..
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Confinement of the
free-electron gas: (a) in
two dimensions, (b) in one
dimension - a quantum
wire, and (c) in zero
dimensions - a quantum
dot.
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5.4 Landau diamagnetism

Free electron model was used by Landau to calculate the orbital
diamagnetism of conduction electrons. The result is:

Xz = —niopy/2ksTF
exactly one third of the Pauli susceptibility, and opposite in sign.

The real band structure is taken into account in an approximate way by
renormalizing the electron mass. Replace m, by an effective mass m*

Then X = -(1/3)(mg/m*) %p

In some semimetals such as graphite or bismuth, m* can be =0.01 m,, hence
the diamagnetism of the conduction electrons may sometimes be the dominant
contribution to the susceptibility. (x, = -4 104 for graphite)
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MgO
AL O,
TiO,
SrTi0;
Zn0
ZrO,
HfO,
$i0,
MgAl,O4
H,0

107% m3 kg!
-3.1
-4.5
0.9

-6.2
-1.1
-1.4
-7.1

-9.0

C(diamond)
C(graphite)

Si
Ge
Na(l
GaAs
(zaN
InSb
Perspex

X
1072 m? kg™!

-6.2

X, -6.3

X 1 -138.0
-1.8
-1.5
-6.4

Cu
Ag
Au
Al
Ta
Zn
Pd
Pt

In
Bi

X
107Y m® kg™!
1
2.4
1.9
7.9
10.7
-2.2
67.0
12.2
-7.0
-17.0



5.5 Quantum oscillations

LetB=B,, A=(0,xB,0),V(r)=0and m=m*
1

Schrodinger’s equation %lpf. + (py + zB)? + ply = Ev
,l.i-’,(x)ci'kyycz'k:z
% vdss - W e A
b + Em we(T — 29)° | ¥(z) = E'9Y(x)
w, = eB/m*, x,=-bk/eB E’=E-(h/2m)k, .
E' = E, = (n+3)hw, b }
h2k? 1 " !
E=—2%+4(n+ =)hw,
o+ (n+ 2w } IRATRIA
-~ eB
The motion is a plane wave along Oz, plus a simple 0 =

harmonic oscillation at f_ in the plane. Hle




When a magnetic field is applied, the states in the Fermi sphere collapse
onto a series of tubes. Each tube corresponds to one Landaue level (n -
value). As the field increases, the tubes expand and the outer one
empties periodically as field increases. An oscillatory variation in 1/B2 of
magnetization (de Haas - van Alphen effect) or of conductivity (Shubnikov
- de Haas ‘efféct) appears.

SR
< From the period, it is possible to deduce
the{~ R cross section area of the Fermi surface
ermalrto > the tubes.
d > % 870

\




