
These lectures provide an account of the basic concepts of magneostatics, atomic
magnetism and crystal field theory. A short description of the magnetism of the free-
electron gas is provided. The special topic of dilute magnetic oxides is treated seperately.
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  University Press (in press) 600 pp [You can order it from Amazon for £ 38].

• Magnétisme I and II, Tremolet de Lachesserie (editor) Presses Universitaires de Grenoble
2000.

• Theory of Ferromagnetism, A Aharoni, Oxford University Press 1996

• J. Stohr and H.C. Siegmann,  Magnetism, Springer, Berlin 2006, 620 pp.
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1. Magnetostatics



1.1 The beginnings
The relation between electric current and magnetic field

Discovered by Hans-Christian
Øersted, 1820.

 

∫Bdl = µ0I     Ampère’s law



1.2 The magnetic moment

Ampère: A magnetic moment m is equivalent to a current loop.

  Provided the current flows in a plane

                    m = IA  units Am2

In general:

            m = (1/2)∫ r × j(r)d3r

where j is the current density; I = j.A

so   m = 1/2∫ r × Idl = I∫ dA = m

                     Units: Am2



M (r)

 Ms

1.3 Magnetization

Magnetization M is the local moment density M = δm/δV - it fluctuates
wildly on a sub-nanometer and a sub-nanosecond scale.

Units: A m-1 e.g. for iron M = 1720 kA m-1

More useful is the mesoscopic average, where δV ~ 10 nm3

                                                                                 δm = MδV

It also fluctuates on a timescale of < 1ns. Take a time average over ~ µs.

e.g. for a fridge magnet (M = 500 kA m-1, V = 2 106 m3, m = 1 A m-1

M can be induced by an applied field  or it can arise spontaneously
within a ferromagnetic domain, Ms.

A  macroscopic average magnetization is the domain average

  M = ΣiMiVi/ ΣiVi

The equivalent Amperian current density is  jM= ∇ x M



1.4 Magnetic fields

 

        Biot Savart law

dB = - µ0 r x j dV
               4πr3   

      = - µ0 r x dl I
                4πr3   

units: Tesla
µ0= 4π x10-7 TA-1m

currents
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Calculation of the dipole field

So at a general point C, in spherical coordinates:

an the equivalent form:

BA=4δBsinε sinε=δl/2r,  m= I(δl)2



Scaleability of magnetic devices
Why does magnetism lend itself to repeated miniaturization ?

m2a

A B = (µ0m/4πr3){2cosθer + sinθeθ}
BA = 2Ma3/4πr3;

If a = 0.1m, r = 4a, M = 1000 kAm-1

BA = 2µ0M/16π =  50 mT

Magnet-generated fields are limited
by M. They are scale-independent

•A



Magnetic recording is the partner of semiconductor technology in the information
revolution. It provides the permanent, nonvolatile storage of information for
computers and the internet. ~ 1 exobit (1021bits) of data is stored
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Already, mankind produces more transistors and magnets in fabs 
than we grow grains of rice or wheat in fields.



1.5 B and H

 

Hm is called the; — stray field outside the magnet

 — demagnetizing field, Hd , inside the magnet

Units: Am-1

The equation used to define H is B = µ0(H + M)

The total H-field at any point is  H = H´+ Hm  where H´ is the applied field



Maxwell’s equations

∇ . B = 0
∇ . D = ρ
∇ × H = j + ∂D/∂t
∇ × E = -∂B/∂t

Written in terms of the four fields, they are valid in a material
medium. In vacuum D = ε0E, H = B/µ0, ρ is charge density (C
m-3), j is current density (A m-2)
In vacuum they are written in terms of the two basic fields B
and E
Also, the force on a moving charge q, velocity v

f = q(E + v × B)

Units: H  A m-1 B   kg C-1 s-1   ≡ tesla (T)

From a long view of the history of 
mankind, there can be little doubt that the
most significant event of the 19th century will
be judged as Maxwell’s discovery of the laws
of electrodynamics.  Richard Feynmann



1.5.1 The B field - magnetic induction/magnetic flux density

∇.B = 0     There are sources or sinks of B i.e no monopoles

Sources of B

• electric currents in conductors

• moving charges

• magnetic moments

• time-varying electric fields. (Not in magnetostatics)

   Gauss’s theorem: The net flux of B across any closed surface is zero

Magnetic vector potential              B = ∇ x A
The gradient of any scalar ∇φ may be added to A without altering B

 Magnetic flux          dΦ = B.dA     Units: Weber (Wb)

∫S B.dA = 0



The equation  ∇ x B = µ0 j   valid in static conditions gives:

Ampere’s law       ∫B.dl = µ0 I    for a closed path

Good for calculating the field for very symmetric current paths.

Example: the field at a distance r

 from a current-carrying wire
               B = µ0I/2πr

B interacts with any moving charge:

Lorentz force        f =q(E+v x B)



•  The tesla is a very large unit
•  Largest continuous field acheived in a lab is 45 T



Human brain 1 fT

Magnetar 1012  T

Superconducting magnet 10 T

Electromagnet 1 T

Helmholtz coils 0.01  T

Earth 50 µT



Sources of uniform magnetic fields

B =µ0nI

B =µ0M ln(r2/r1)

Long solenoidHelmholtz coils

Halbach cylinder

 

B =(4/5)3/2µ0NI/a



1.5.2 The H field
The magnetization of a solid reflects the local value of H.

B = µ0H                 In free space.

∇ x B = µ0(jc + jm)          where     ∇ x H = µ0jc

Coulomb approach to calculate H

H has sources and sinks associated with nonuniform magnetization

                                        ∇.H = - ∇.M    

Imagine H due to a distribution of magnetic charges qm.

 H = qmr/4πr3

Scalar potential
When H is due only to magnets i.e       ∇ x H =0
Define a scalar potential   ϕm    (Units are Amps)
Such that        

H = -∇ϕm The potential of charge qm  is     ϕm = qm /4πr

∫H.dl = Ic



1.5.3 Boundary conditions
Gauss’s law ∫SB.dA  = 0
gives that the perpendicular component of B is
continuous.

(B1-B2).en=0

It follows from from Ampère’s law

 ∫loopH.dl  = Ic  = 0
(there are no conduction currrents on the
surface) that the parallel component of H is
continuous.
                       (H1-H2) x en=0Conditions on the potentials

Since   ∫SB.dA  = ∫loopA.dl   (Stoke’s theorem)

                          (A1-A2) x en=0

The scalar potential is continuous             ϕm1 = ϕm2



In LIH media,                B  = µ0 µr H

Hence

                             B1en = B2en

                       H1en = µr2/µr1 H2en

So field lies ≈ perpendicular to the surface of soft iron but parallel to the
surface of a superconductor.

Diamagnets produce weakly repulsive images.

Paramagnets produce weakly attractive images.

Boundary conditions in LIH media

Soft ferromagnetic mirror Superconducting mirror



1.6 Field calculations

Three different approaches:
   Integrate over volume distribution of M

Sum over fields produced by each magnetic
dipole element Md3r.

Using

Gives

(Last term takes care of divergences at the origin)



Amperian approach

Consider bulk and surface current distributions

        jm = ∇ x M         and      jms = M x en

                 Biot-Savart law gives

For uniform M, the Bulk term is zero since ∇ x M =0



Coulombian approach

Consider bulk and surface magnetic charge distributions

                     ρm = -∇.M         and      ρms = M.en

         H field of a small charged volume element V is

                             δH = (ρmr/4πr3) δV

            So

For a uniform magnetic distribution the first term is zero.
                                                ∇.M=0



1.7 Demagnetising field
The H-field in a magnet depends M(r) and on the shape of the magnet.
Hd is uniform in the case of a uniformly-magnetized ellipsoid.

  (Hd )i = - Nij Mj       i,j = x,y,z

Nx + Ny + Nz = 1

Demagnetizing factors for some simple shapes

                          Long needle,  M parallel to the long axis     0
Long needle,  M perpendicular to the long axis 1/2

Sphere, M in any direction 1/3

Thin film,  M parallel to plane  0
Thin film,  M perpendicular to plane                                    1

General ellipsoid of revolution (a,a,c)              Nc = ( 1 - 2Na)



Demagnetizing factors for general ellipsoids

Demagnetizing factors for
ellipsoids of revolution
Major axes (a,a,c)



Measuring magnetization with no need for demagnetization correction

Apply a field in a direction where N=0

H = H´+ Hm                       (Hd )i = - Nij Mj

H ≈ H’ - N M



It is not possible to have a uniformly magnetized cube

When measuring the magnetization of a sample H is taken as the
independent variable, M=M(H).



1.8 Response to an applied field H′
Susceptibility of linear, isotropic and homogeneous (LIH) materials

M = χ’H’ χ’  is external susceptibility

It follows that from H = H’ + Hd  that

1/χ = 1/χ’ - N

Typical paramagnets and diamagnets:

 χ ≈ χ’    (10-5  to  10-3 )

Paramagnets close to the Curie point and ferromagnets:

    χ>>χ’             χ diverges as T → TC     but χ’ never exceeds 1/N.

M M

H H'Ms /3 H’ H

M

  H0

Ferromagnetic sphere, χ’ =3

 M = χH               χ  is internal susceptibility



M

H

paramagnetic

diamagnetic

χ

T

Paramagnetic - Curie law

Diamagnetic - independent of temperature

Magnetization curves Susceptibility vs temperature



Susceptibilities of the elements



Permeability

In LIH media     B=µH            Units: TA-1m

Relative permeability            µr = µ / µ0

B = µ0(H + M)            gives                       µr=1 + χ 



1.5  Hysteresis

The hysteresis loop shows the irreversible, nonlinear response of a ferromagnet to
a magnetic field . It reflects the arrangement of the magnetization in ferromagnetic
domains. The magnet cannot be in thermodynamic equilibrium anywhere around
the open part of the curve!

coercivity

spontaneous magnetization

remanence

major loop

virgin curve
initial susceptibility



1.5.1 Soft and hard magnets. 

The area of the hysteresis loop represents the energy loss per cycle. For efficient
soft magnetic materials, this needs to be as small as possible.

M (MA m-1)

-1            0                 1     H (MA m-1)

1

-1

M (MA m-1)

-50            0                 50     H (A m-1)

1

-1

For a useful hard magnet.
Hc > Mr/2



Hd

Any macroscopic magnet
exhibiting remanence is in a
thermodynamically-metastable
state.

Hd

1.5.2 Energy product.  

Working point.



Daniel Bernouilli
1743

S         N

Gowind Knight
1760

Shen Kwa  1060

N < 0.1
The shape barrier.

New icon for permanent magnets! ⇒



1.9 Magnetostatic energy and forces
Energy of ferromagnetic bodies

• Magnetostatic (dipole-dipole) forces are long-ranged, but weak. They
determine the magnetic microstructure.

M ≈ 1 MA m-1
,  µ0Hd ≈ 1 T, hence µ0HdM ≈ 106 J m-3

• Products B.H, B.M, µ0H2, µ0M2   are all energies per unit volume.

• Magnetic forces do no work on moving charges f = q(v x B)

• No potential energy associated with the magnetic force.

  Γ = m x B           εm = -m.B

In a non-uniform field,    f = -∇εm     f = m.∇B

Torque and potential energy of a dipole in a field

Force



Reciprocity theorem 

The interaction of a pair of dipoles, εp, can be considered as the energy 
of m1 in the field B21 created by m2 at r1 or vice versa.

εp = -m1.B21 = -m2.B12

Extending to magnetization distributions:

So        εp = -(1/2)(m1.B21+ m2.B12)

ε = -µ0 ∫ M1.H2 d3r = -µ0 ∫ M2.H1 d3r



Self energy

The interaction of the body with the field it creates itself, Hd.

Hloc=Hd+(1/3)M

Consider the energy to bring a small moment δm into position within
the magnetized body
                                        δε = - µ0 δm.Hloc

Integration over the whole sample gives

The magnetostatic self energy is defined as

Or equivalently, using B = µ0(H + M) and ∫ B.Hdd3r=0

For a uniformly magnetized ellipsoid



Energy associated with a field

General expression for the energy associated with a magnetic field distribution

Aim to maximize energy associated with the field created around the magnet,
from previous slide:

Can rewrite as:

where we want to maximize the integral on the left.

Energy product: twice the energy stored in the stray field of the magnet

-µ0 ∫i B.Hd d3r



Work done by an external field
Elemental work δw to produce a flux change δΦ is I δΦ
Ampere:  ∫H.dl = I    So δw = ∫ δΦ H.dl

So in general:          δw = ∫ δB.H.d3r

H = H´+ Hd              B = µ0(H + M) 
Subtract the term associated with the H-field in empty space, to give the
work done on the body by the external field;

gives



Thermodynamics

First law:    dU = HxdX + dQ

(U,Q,F,G are in units of Jm-3)

dQ = TdS

Four thermodynamic potentials;

U(X,S)

E(HX,S)

F(X,T)  = U - TS dF = HdX - SdT

G(HX,T) = F- HXX dG = -XdH - SdT

Magnetic work is HδB or µ0H’δM

dF = µ0H’dM - SdT 
dG = -µ0MdH’ - SdT

S = -(∂G/∂T)H’     µ0 M = -(∂G/∂H’)T’

Maxwell relations

(∂S/∂H’)T’ = - µ0(∂M/∂T)H’  etc. 

 

M 

H’ 

G!

F!"

 



Magnetostatic Forces

Force density on a magnetized body at constant temperature

                                                 Fm= - ∇G

Kelvin force

General expression, for when M is dependent on H is

V =1/d    d is the density



1.10 Units and dimensions

• We use SI, with the Sommerfeld convention B = µ0(H + M). Engineers prefer the
Kenelly convention B = µ0H + J, where the polarization J is µ0M. Both are acceptable in SI.
The polarization of iron is J = 2.16 T.

•Flux density B and polarization J are measured in telsa (also mT, µT). Magnetic moment m is
measured in A m2 so the magnetization M and magnetic field H are measured in A m-1. From
the energy relation
E = -m.B, it is seen that an equivalent unit for magnetic moment is J T-1, so magnetization can
also be expressed as J T-1m-3. σ, the magnetic moment per unit mass in J T- 1kg-1 or A m2 kg-1 is
the quantity most usually measured in practice. µ0 is exactly 4π.10-7 T m A-1.

•The international system is based on five fundamental units kg, m, s, K, and A.
Derived units include the newton (N) = kg.m/s2, joule (J) = N.m, coulomb (C) = A.s, volt (V) =
JC -1, tesla (T) = JA-1m -2 = Vsm-2, weber (Wb) = V.s = T.m2 and hertz (Hz) = s-1.
Recognized multiples are in steps of 10±3, but a few exceptions are admitted such as cm (10-2 m)
and Å (10-10 m). Multiples of the meter are fm (10-15), pm (10-12), nm (10-9), µm (10-6), mm (10-3)
m (10-0) and km (103).

• The SI system has two compelling advantages for magnetism:

(i)  it is possible to check the dimensions of any expression by inspection and
(ii) the units are directly related to the practical units of electricity, used in the laboratory.



 cgs Units

• Much of the primary literature on magnetism is still written using cgs units. Fundamental cgs
units are cm, g and s. The electromagnetic unit of current is equivalent to 10 A. The
electromagnetic unit of potential is equivalent to 10 nV. The electromagnetic unit of magnetic
dipole moment (emu) is equivalent to 1 mA m2. Derived units include the erg (10-7 J) so that
an energy density such as K1 of 1 Jm-3 is equivalent to 10 erg cm-3.  The convention relating
flux density and magnetization is

B  = H+ 4πM
where the flux density or induction B is measured in gauss (G) and field H in oersted (Oe).
Magnetic moment is usually expresed as emu, and magnetization is therefore in emu/cm3,
although 4πM is frequently considered a flux-density expression and quoted in kilogauss. µ0 is
numerically equal to 1 G Oe-1, but it is normally omitted from the equations.

The most useful conversion factors between SI and cgs units in magnetism are

B 1 T ≡ 10 kG 1 G ≡ 0.1 mT
H 1 kA m-1 ≡ 12.57 (≈12.5) Oe 1 Oe ≡ 79.58 (≈80) A m-1

m 1 Am2 ≡ 1000 emu 1 emu ≡ 1 mA m2 

M 1 kA m-1 ≡ 1 emu cm-3

σ 1 Am2 kg-1 ≡ 1 emu g -1 

The dimensionless susceptibility M/H is a factor 4π larger in SI than in cgs.



Dimensions

In the SI system, the basic quantities are mass (m), length (l), time (t), charge (q) and
temperature (θ). Any other quantity has dimensions which are a combination of the dimensions
of these five basic quantities, m, l, t, q and θ. In any relation between a combination of physical
properties, all the dimensions must balance.

Mechanical

Quantity symbol unit m l t q !

area A m2 0 2 0 0 0

volume V m3 0 3 0 0 0

velocity v m.s-1 0 1 -1 0 0

acceleration a m.s-2 0 1 -2 0 0

density " kg.m-3 1 -3 0 0 0

energy E J 1 2 -2 0 0

momentum p kg.m.s-1 1 1 -1 0 0

angular momentum L kg.m2.s-1 1 2 -1 0 0

moment of inertia I kg.m2 1 2 0 0 0

force F N 1 1 -2 0 0

power p W 1 2 -3 0 0

pressure P Pa 1 -1 -2 0 0

stress S N.m-2 1 -1 -2 0 0

elastic modulus K N.m-2 1 -1 -2 0 0

frequency # s-1 0 0 -1 0 0

diffusion coefficient D m2.s-1 0 2 -1 0 0

viscosity (dynamic) $ N.s.m-2 1 -1 -1 0 0

viscosity (kinematic) # m2.s-1 0 2 -1 0 0

Planck’s constant h J.s 1 2 -1 0 0

Thermal

Quantity symbol unit m l t q !

enthalpy H J 1 2 -2 0 0

entropy S J.K-1 1 2 -2 0 -1

specific heat C J.K-1.kg-1 0 2 -2 0 -1

heat capacity c J.K-1 1 2 -2 0 -1

thermal conductivity " W.m-1.K-1 1 1 -3 0 -1

Sommerfeld

coefficient

# J.mol-1.K-1 1 2 -2 0 -1

Boltzmann’s constant k J.K-1 1 2 -2 0 -1



Electrical

Quantity symbol unit m l t q !

current I A 0 0 -1 1 0

current density j A.m-2 0 -2 -1 1 0

potential V V 1 2 -2 -1 0

electromotive force " V 1 2 -2 -1 0

capacitance C F -1 -2 2 2 0

resistance R # 1 2 -1 -2 0

resistivity $ #.m 1 3 -1 -2 0

conductivity % S.m-1 -1 -3 1 2 0

dipole moment p C.m 0 1 0 1 0

electric polarization P C.m-2 0 -2 0 1 0

electric field E V.m-1 1 1 -2 -1 0

electric displacement D C.m-2 0 -2 0 1 0

electric flux & C 0 0 0 1 0

permitivity " F.m-1 -1 -3 2 2 0

thermopower S V.K-1 1 2 -2 -1 -1

mobility µ m2V-1s-1 -1 0 1 1 0

Magnetic

Quantity symbol unit m l t q !

magnetic moment m A.m2 0 2 -1 1 0

magnetisation M A.m-1 0 -1 -1 1 0

specific moment " A.m2.kg-1 -1 2 -1 1 0

magnetic field strength H A.m-1 0 -1 -1 1 0

magnetic flux # Wb 1 2 -1 -1 0

magnetic flux density B T 1 0 -1 -1 0

inductance L H 1 2 0 -2 0

 susceptibility (M/H) $ - 0 0 0 0 0

permeability (B/H) µ H.m-1 1 1 0 -2 0

magnetic polarisation J T 1 0 -1 -1 0

magnetomotive force F A 0 0 -1 1 0

magnetic ‘charge’ qm A.m 0 1 -1 1 0

energy product (BH) J.m-3 1 -1 -2 0 0

anisotropy energy K J.m-3 1 1 -2 0 0

exchange coefficient A J.m-1 1 1 -2 0 0

Hall coefficient RH m3.C-1 0 3 0 -1 0

Examples:

1) Kinetic energy of a body; E = (1/2)mv2

[E] = [ 1, 2,-2, 0, 0] [m] =   [ 1, 0, 0, 0, 0]

[v2] = 2[ 0, 1,-1, 0, 0]

  [ 1, 2,-2, 0, 0]

2) Lorentz force on a moving charge; F = qvxB

[F] = [ 1, 1,-2, 0, 0] [q] =   [ 0, 0, 0, 1, 0]

[v] =   [ 0, 1,-1, 0, 0]

[B] =   [ 1, 0,-1,-1, 0]

  [ 1, 1,-2, 0, 0]



3) Domain wall energy  !w = "AK  (!w is an energy per unit area)

[!w] = [EA-1]  ["AK] =1/2[ AK]

        = [ 1, 2,-2, 0, 0] ["A]=1/2[ 1, 1,-2, 0, 0]

          -[ 1, 1,-2, 0, 0] ["#]=1/2[ 1,-1,-2, 0, 0]

        = [ 1, 0,-2, 0, 0]     [ 1, 0,-2, 0, 0]

4) Magnetohydrodynamic force on a moving conductor  f = $vxBxB (f is a force per

unit volume)

[f] = [ FV-1] [$] =   [-1,-3, 1, 2, 0]

    = [ 1, 1,-2, 0, 0] [v] =   [ 0, 1,-1, 0, 0]

      -[ 0, 3, 0, 0, 0] [B2] = 2[ 1, 0,-1,-1, 0]

       [ 1,-2,-2, 0, 0]   [ 1,-2,-2, 0, 0]

5) Flux density in a solid B = µ0(H + M).  (Note that quantities added or subtracted

in a bracket must have the same dimensions)

    [B]= [ 1, 0,-1,-1, 0] [µ0] =   [ 1, 1, 0,-2, 0]

             [M],[H] =   [ 0,-1,-1, 1, 0]

          [ 1, 0,-1,-1, 0]

6) Maxwell’s equation %xH = j + dD/dt.

[%xH] = [Hr-1] [j] = [ 0,-2,-1, 1, 0] [dD/dt] = [Dt-1]

= [ 0,-1,-1, 1, 0] = [ 0,-2, 0, 1, 0]

  -[ 0, 1, 0, 0, 0]    -[ 0, 0, 1, 0, 0]

= [ 0,-2,-1, 1, 0] = [ 0,-2,-1, 1, 0]
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