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Outline of the talk
 Long-time (>s) magnetisation dynamics
 The concept of energy barriers and switching for an individual 

nanoparticle
 Calculation of energy barriers for more complicated systems
 Energy barriers for systems of interacting nanoparticles
 Kinetic Monte Carlo for thermal decay evaluation in a completely 

interacting system.

• Ultra-short timescale magnetisation dynamics
    (fs-ps)
 The ultra-fast pump-probe experiment 
 Modelling 
 Introduction of the correlated noise approach.



Long timescale
(up to years)



The Stoner-Wolfarth particle
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The Arrhenius-Neél law
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Brown’s asymptote:
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•In general, f0=1/0=F(H, but in most of cases the approximation

f0=109-1011 s-1 is sufficient

For an independent small particle with applied field parallel to anisotropy
The reversal probability is obtained from the solution of the
Fokker-Planck equation

The general problem does not have solution.



Relaxation in complex systems
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Superparamagnetism

 The relaxation time of a grain is given by the Arrhenius-Neel 
law

 where f0 = 109s-1. and E is the energy barrier
 This leads to a critical energy barrier for superparamagnetic 

(SPM) behaviour

 where tm is the ‘measurement time’
 Nanoparticles with E < Ec exhibit thermal equilibrium (SPM) 

behaviour - no hysteresis
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KV>25kBT – for stability at room temperature, KV>60kBT – for magnetic recording



Slow processes:

k

B

T <<E (Energy barrier) 

Energy barrier calculation is essential part for  determination of 
long-time thermal stability and slow  thermal relaxation

This is important from the point of view of magnetic recording 
applications.

Evalulation of energy barriers should be done in a 
multidimensional space and is a difficult problem

in an interacting system energy barriers are dynamical and 
should be constantly recalculated.
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Slow processes:

k

B

T <<E (Energy barrier)

 Energy barriers should satisfy conditions:

grad E =0    

Only one  (lowest) eigenvalue of the Hessian matrix
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Ridge optimisation 
method

Ridge optimization
method

The obtained point is checked:
•To have a unique negative eigenvalue
•To separate the basins of attractions of 
the two minima from which one is initial  

Similar method –elastic band

Constrained (Lagrangian 
multiplier) method:

),( 0  NHF
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Varying the length-> different saddle point configurations 
corresponding to different reversal mechanism

One atomistic FePt grain

Energy barriers in a single FePt grain 
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energy of the domain 
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For Js>0.1J energy barriers are 
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configuration

saddle point configuration Energy barriers as a function 
of Js: soft/hard grain



Energy barriers for systems of
nanoparticles



The Pfeiffer approximation
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 is the angle between
anisotropy and interaction field

h

int 

contains exchange and 
magnetostatic fields

The Pfeiffer approximation is slightly 
displaced to smaller values

Co particles
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Multidimensional energy barrier distribution for Co and 
FePt particles 
(only magnetostatic interactions)
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Multidimensional energy barrier distributions 
evaluated at the remanence

Magnetostatic interactions:
•Broaden distributions
•Displace the center to 
larger values

This is consistent with 
experimental observations 
that with the increase of the 
strength of interactions:

•Magnetisation decay starts 
earlier
•The blocking temperature 
increases

c=0.2    c=0.36    c=0.56



Kinetic Monte Carlo
Evaluate all  energy barriers in multidimensional space
Evaluate all transition rates, according to the Arrhenius law

Choose a particle (cluster) with the probability proportional to its transition 
rate and invert it
Approximate the waiting time from the exponential distribution 
Recalculate all the energy barriers

in practice is possible for only small interaction
     Only plausible, if a good initial guess for all the clusters is known
     Energy barrier distribution is a dynamical property and requires a  large 
computational effort.     
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For initial guess, we use the Metropolis MC with simulated annealing



Thermal decay for an emsemble of 2D Co 
particles:

( starting from the remanent state, in-plane field 
2D easy random easy axes distribution)
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Initial energy barrier distributions
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Energy barrier and magnetic relaxation calculated for 
conventional Co longitudinal recording medium
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Important conclusions: Untextured medium with small amount of 
exchange is initially less stable but more stable at large time scale

Textured medium is more stable in the presence of small amount of exchange

textured

untextured



Perpendicular CoCrPt recording medium
(100 grains, full micromagnetic contributions)
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Ultrafast timescale:
femto-pico seconds



“Spin-flip” as a fundamental problem

Via field pulses:Via field pulses:

2000



Motivation

s)(10dsfemtosecon -15

spicosecond

 Model the 3 regions of ultrafast spin dynamics experiments:    

E.Beaurepaire et al. 
Phys. Rev. Lett. 76, 4250 (1996)

M. Van Kampen et al, Phys. Rev. Lett. 95, 267207 (2005) 

I. Fast demagnetisation

II. Magnetisation recovery 

snanosecondIII. Damped precession
Delay between
Pump and probe
pulses



Can light reverse M?

Magnetization reversal induced by a single 40 fs laser pulse.Magnetization reversal induced by a single 40 fs laser pulse.

.Each domain is written with a single 40 fs 
laser pulse.
.Magnetization reversal must occur within 1 
ps.
.Femtosecond (THz) opto-magnetic switch is 
faisible.

C.D. Stanciu et al.:

First demostration of all-optical
Magnetic recorsing – 5microns bits



Femtosecond dynamics chalenges:

 The physics of the dynamics even in simple 3d metal such as Ni 
is not understood. 

 Direct spin-momentum transfer to electron system is discarded
 Excitation of non-magnetic states mediated by enhanced spin-orbit 

coupling
 No inverse Faray effect
 Thermal mechanism ?!

Femtosecond pump-probe
experiment allows to 
investigate the dynamics 
of electron, phonon and spin 
systems in non-equilibrium 
conditions



Experimental measurements: Kerr signal and 
Reflectivity dynamics in Ni thin films
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Schematics of the model

Schematics: Laser excitation … in a thermal macrospin 
model



Theoretical model: 2T model
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Three main approaches:
(all based on the Langevin dynamics)

 Atomistic model based on the LLG (Langevin) 
equation 

 Atomistic model based on the Landau-Lifshitz-
Miyasaki-Seki equation 

  -> to take into account
  electron-electron corelations
 Micromagnetic approach based on the Landau-

Lifshitz-Bloch (Langevin) equation
   -> to extend modelling size



Atomistic model
 Uses the Heisenberg form of exchange

 Dynamics governed by the Landau-Lifshitz-Gilbert 
(LLG) equation.

 Random field term introduces the temperature 
(Langevin Dynamics). 

 Variance of the random field determined by the 
electron temperature Tel.
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The Landau-Lifshitz-Bloch equation 
[D.Garanin,PRB 55 (1997) 3050] : 
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perpendicular

• Magnetisation magnitude is no 
conserved 

• Entropy correction

    



||  2T / 3TC

  [1T / 3TC]
(300K)  0.04    0.045

•LLB is coupled to 2T model

•Temperature-dependent
parameters from MFA
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Critical slowing down for strong 
demagnetization

Slowing down of the electron 
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Simulation and experimental results for Ni 
15nm thin film
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    Modelling of optically-induced 
precession.
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Langevin dynamics based on the LLG:
the white noise approximation is not always valid 
 The electron-electron correlation time in metals
is of the of 10 fs
 The electron-phonon correlation time is of the order of 1ps
 Strong fields (including exchange field) have characteristic 

frequencies of the order of inverse correlation time
 The spin and phonon systems are not at equilibrium, the 

fluctuation-dissipation theorem should be avoided.

It is necessary to introduce correlated noise!



The Ornstein-Uhlenbeck process
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Equilibrium angle distributions:
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oFor small temperatures (additive noise), the diffusion coefficient is re-normalised

oFor large temperatures (multiplicative noise), the distribution is not Bolzman
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Landau-Lifshitz-Miyazaki-Seki (LLMS) 
equations

oThe coupling term describes 
the adjustment of the noise to  the spin direction
oWhen c ->0, the LLG equation is recovered
oWe generalize the LLMS equations to many
spin case. 



Longitudinal 
relaxation 
as a function of 
correlation time
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Modelling of the 
ultra-fast pump-probe 
experiment for 
different correlation times



Main features of this new approach
and conclusions
 The fluctuation-dissipation theorem is applied to the electron 

system only
 The spin and electron systems do not need to be
in the equilibrium with each other
 It is thermodynamically consistent
 The exact values of corr and are subject of ab-initio 

calculations

 If corr ~10 fs the longitudinal relaxation is affected
by correlations but the perpendicular relaxation (LLG) is not.

o The slowing down of demagnetisation rates as a function of 
correlation time 

(different materials have different demagnetisation rates,
Should be possible to control with dopping, observed in half metals)
Reference: U.Atxitia et al Phys. Rev. Lett. 102 (2009) 055013. 



CONCLUSIONS
 For the long-timescale:

 Energy barrier determination is essential for the long-time magnetisation 
decay

 Energy barriers of nanoparticles which are not circular or elliptical are not 
KV

 Energy barriers are changing in time due to magnetic interactions

 The kinetic Monte Carlo combination with simulated annealing is capable 
to determine magnetisation decay for arbitrary timescale.



CONCLUSIONS
 For ultra-short timescale:

 We have shown that the Langevin dynamics approach adequately describes 
all stages of laser-induced dynamics:

 Femtosecond linear demagnetisation.
 Picosecond magnetisation recovery.
 Laser-induced precession.

 The main contribution to the slowing down of ultrafast demagnetisation rate 
comes from the slowing down of the longitudinal relaxation approaching Tc

 In some extreme conditions with characteristic timescale of the order of 
electron-electron correlation time a coorelated noise approach is necessary

 We have introduced an approach based on the Landau-Lifshitz-Miyazaki-
Seki equation.
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