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Objective: modelling of
technologlcal processes |
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Introduction

Magnetic system is not isolated, the magnetisation change
can occur at any timescale.

Magnetism is a quantum phenomena.

Ab-initio calculations, although rapidly developing, at the
present state of art are not capable to calculate

magnetisation dynamics in complex materials at arbitrary
timescale and temperature.

Ay
At larger spatial scale, e
relatively large magnetisation ‘/u
volumes (10nm) can be considered /;,7
as classical particles.
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The exchange term: micromagnetics
versus spin models

eMicromagnetics calculates the magnetostatic fields exactly but
which is forced to introduce an approximation to the exchange valid
only for long-wavelength magnetisation fluctuations.

eThe exchange energy is essentially short ranged and involves a
summation of the nearest neighbours. Assuming a slowly spatially
varying magnetisation the exchange energy can be written

E_.. =IW.dv, with W_ = A(Vm)?2

exch

with
(Vm)2 = (vm)? + (Vm )? + (Vm,)?

The material constant A = JS2/a for a simple cubic lattice with lattice
constant a. A includes all the atomic level interactions within the
micromagnetic formalism.

ES"=-N"J S S
eAtomistic models are discrete and use the Heisenberg Z ymitml

J#I
form of exchange



Micromagnetic models of
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Different timescales:

Electron-spin  All-optical Langevin dynamics
10-14s fs  relaxation laser-pulsed on atomistic level
. processes experiments
10-11s ps Magnetisation Fast-Kerr Langevin dynam{cs
precession. e R on micromagnetic
10-°s ns FMR, synchrotron level
radiation studies
10-6s pus dynamics
acceleration
10-3s ms Hysteresis Conventional techniques
measurements  Mmagnetometers
(VSM, SQUID)
10 % s
Magnetic viscosi
103s ks expgerimenfa o kinetic Monte
Carlo with energy
10%s month barriers

Long-time thermal stability  calculations

9
10°s years . . magnetic recording.



Natural
magnetisation
dynamics:
100 pico- 100
nano-second
timescale




Outline for today: 100ps-
100ns (natural) dynamics

Non-thermal dynamics:
Ferromagnetic resonance

Basic dynamical equation: the Landau-Lifshitz-
Gilbert

The problem of magnetic damping (a): main
processes

Thermal dynamics:

Principles of the Langevin dynamics.
Modelling of thermal spinwaves

The Landau-Lifshitz-Bloch micromagnetics for
dynamics close to Tc



Ferromagnetic resonance(FMR):
(Arkadiev, 1911; Kittel, 1947)

A ferromagnetic body under o = yﬂHJr(Nx —NZ)M][H+(N —NZ)M]
applied field has a maximum g

absorption in frequencies:

The absorption peak contains information
about anisotropy field.

Precession and relaxation

TR of M mn response to an
L S I Gt
|l applied field H.
— L] .
He o= 2nf=yB ) Torque on magnetisation
‘ ~=~-natural response l avt — _[jj' X HIII]
H,: — driven response ¥ ot
% e
Lorentzian absorption line g
typical of FMR showing j> —f \e—ar
| : | —
microwave powel 2
absorption as a function of ~ v, - H,
swept bias field. The absorption line width contains

Information on damping processes



Ferromagnetic resonance

e The experiment is normally
performed in almost saturated
conditions.

e The absorption peak contains
information about anisotropy field.

e The linewidth contains information
about dissipation processes.



FMR tecniques as a probe of
magnetisation dynamics
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The Landau-Lifshitz (LL) and the
Landau-Lifshitz-Gilbert (LLG) equations
of motion

(for magnetization vector):

LL ;tluation Landau-Lifshitz damping, 1935
' — a 7/ — —

T =y M x H |- THEO\M x| M x H

=) g <7 ]

S

Gilbert equation
(physically more reasonable
for large damping)

M __ iaxi)e % | g™
g Q/O[MxH]JrM {Mx }

S

Gilbert damping, 1955

How the Gilbert equation could be transformed into the LL equation— LLG equation

i s M _ Ly W x [ x A+ % i x 1M The LL eq. is equivalent to G equation
dt M, dt with substitutions
(= dM ) dM (. /4 a
M| M - — M " _ 0 _ G
( dtj dt( ) Vo= ) A6 = )
Itag [+a,

=0 :Mj



Convenient form of the LLG
equation:

m o,
mey EEERR) )
- H, OF' Contains all contributions: anisotropy,
B H,  om Exchange, magnetostatic, Zeeman,
depends on M
7o 2K
M, - Anisotropy field
Haﬁ* cE
dm 7. id i B Hy=—r
=—n7t><h]+an7z><[n7z><h] Il PP 2
dt H Ny
gyromagnetic
precession
‘ T=0K
a=1.0 a=0.1

minimum
reversal time




The Bloch-Bloembinger
damping:

. 1
J = —%, [M X H]X,Y -—M,, Transverse relaxation
XY T2

. 1
=—7, [M X H]Z + T(MS —MZ) Longitudinal relaxation



The problem of damping:

e Different relaxation processes:
» Magnon-magnon scattering

» Magnon-electron interactions (especially in
metals)

» Phonon-magnon interactions
(magnetostriction)

» Impurities

» Extrinsic factors (grain boundary, surface
roughness, etc.)

» Temperature disorder



Theory of magnetic
damping constant (a.):

Uniform motion Spin waves
/‘/'/‘/’/‘%> AN/
Eissipation in lattice]| <— | Electronsystem j<==| 5 ities

@ = F

Surrounding body




W Ferromagnets and their spin excitations

H:—JZSi-SJ—g,uBZSioH Heisenberg
iJ i Hamiltonian

_ 8Hp
M = v Z,-:S"

1. Uniform precession (ellipsoid) 2. Spin Waves

(k) = 0(0)+ Ak’

More generally: / .

ho,
H, =-0E,, /M.

» k

Courtesy of K.Guslienko



Kittel formula for spinwaves
dispersion relation:

Anisotropic single crystal ferromagnet: Angle between M and k

2
(a)] = (HO +H, +Ak2XHO +H ,+ Ak* + 27M _ sin’ Qky

Y \ \/v >\

Applied  Anisotropy CXchange Magnetostatic
field field interaction interaction

o /




Magnons and their
interactions:

e (Classical spinwaves correspond to quasiparticles
called magnons.

e Homogeneous magnetisation (FMR mode)
corresponds to magnon with k=0.

e Linear normal modes (magnons) do not interact.
Nonlinear processes correspond to magnon-

magnon Interactlons'Magnon decay Two magnon merging
magnon scattering 2 1

3 1 / 3
2\4

These interactions define kinetic effects (e.x. heat conductivity) and
width and shape of the FMR line and magnon lifetime

1




Nonlinear phenomena: Suhl
instabilities.

e For large excitation power - FMR
saturation occurs

e If the density of magnons gets higher
than critical value - the homogeneous
oscillations become unstable

) w, = o(k)+ o(-k)=2w0(k)

k=0 The occurrence of the instability depends on the system
geometry and is governed by the applied field.

K 20, = o(k)+w(-k)=2w(k) Second condition,
more easy to meet



Inherent relaxation processes
(via spin-wave instabilities)
e Even without external dissipation it is possible to

reach magnetisation reversal via spin-wave
instabilities.

1+
m %/ Box-fbc particle 28 x 31 x 34, V' =29512
0.5+ -' . : : B
j prepared with all spins aligned
I/ antiparallel to h = /e
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Main non-inherent relaxation
processes:

o Direct spin-lattice relaxation due to
nonuniformities

» Heterogeneity of composition

> Polycrystalline structure (grain coundaries, etc.)

» Nonuniform stresses, dislocations

» Geometrical roughness: pores, surfaces etc.

o Indirect spin-lattice relaxation

Via ions with strong spin-orbital coupling
Via charge carriers



The problem of damping (o)

e Although there exist theories trying to
evaluate the damping parameter basing
on a particular mechanism, the
comparison with experlment remains poor.

e Normally the Gilbert damping o is a
phenomenological parameter, taken from
the experiment.

e The values from FMR and direct
measurement of magnetisation switching
(fast Kerr measurements) not always
coincide.



Observation of the precessional dynamics:

W.K.Hiebert etal, PRB, PRL, Nature (2002)
Scanning optical microscope

Simulation with LLG

H=0 kA/m




Dinamical effects:

Precesional switching:
Faster and Ipss Higlds.,.

Gilbert (LLG):
Experiment with ps field pulses - - _ _ - -
perpendicular to the magnetisatrion M = [M x H of ]— 104 [M X [M x H off
(C.Back et al, Science, 1999)
Fe/GaAs Har A OF,,
"""""""""""""""""""""" Ha = Al

gyromagnetic
d] precession

minimum
reversal time

*H || M —non-precessional switching
*Prcessional switching is faster, however, the ringing
phenonema occur.

Simulacion LLG



Comparlson of Patterns
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Observed (SEMPA)

Calculated (fit using LLG)

Anisitropies same as FMR

Damping a = 0.017

4x larger than FMR

WHY?

Additional angular momentum
dissipation? - spin current

pumped across interface into paramagnet

causes additional damping
(SPIN ACCUMULATION)



Thermal effects



Thermal fluctuations play very important
role in magnetisation dynamics:

At the microscopic level:

At the equilibrium they are responsible for thermally
excited spinwaves.

Spinwaves are responsible for thermal magnetisation
reversal via the spinwave instabilities and energy
transfer to main reversal mode.

At more macroscopic level

*Thermal fluctuations are responsible for random walk in
a complex energy landscape

-Eventually energy barriers could be overcome with the
help of thermal fluctuations leading to magnetisation
decay.




The theory of thermal magnetization fluctuations of single
domain, non-interacting particles was introduced by
W.F.Brown (W .F.Brown Phys Rev 130 (1963) 1677)

“We now suppose that in the presence of thermal agitation, “the
effective field” describes only statistical (ensemble) average of rapidly
fluctuating random forces, and that for individual particle this
expression must be augmented by a term h(t) whose statistical average is
Zero’”

<h®)>=0, <h@h(t+9>=po o(v), 1ij=xyz

“The random-field components are formal concepts, introduced for
convenience, to produce the fluctuations oM™

W.F.Brown outlined two methods:

-Based on the fluctuation-dissipation theorem

-Imposing the condition that the equilibrium solution of the2Bokkér-Planck
equation is the Boltzman distribution H= MV (1+a?)

As a result of both in a non-interacting system.



Thermal micromagnetics
Langevin dynamics approach

dMd _ 7 o h Y& e (KT
i MM H) ~ “Initially introduced
: ~ for nanoparticles
: j *This was brought to
- = = . micromagnetics.
F H Zeeman +H RSO +H exch H magnetost Hi‘&ermzé
Yoo T No correlations
rheml,.r (f) = 0 < Hrhaﬂn,: (f)Hrhem,j (f') == —B];, {S:j{g(f_f') Between time
M, - and different particles!!

W.F.Brown, Phys Rev 130 (1963) 1677.



Note on the damping and
thermal processes.

e In principle, the Gilbert (or other) form of
damping is as a result of spin coupling
with the oscillator thermal bath, in this
sense, the thermal fluctuations are already
included into the damping term.

e In some approximations, the undamped LL
equation is coupled to a system of
oscillators (phenomenological phonon
bath) and the resulting LLG damping is
derived.



Fokker-Plank equation for
isolated nanoparticle :
o

—WlXE—OCWlX(WZXE)+DWZX(WZX):|P
o

o°P__ 0

ot O
Diffusion coefficient
(strength of fluctuations)

P, (m) oc exp|- E(m)/ k,T|

e Boltzmann distribution

in the equilibrium

_ak,T

D =
MV

The noise can be introduced either to precessional term or to both damping and
precessional terms



Problem of numerical scheme
dM v = ya H=H _ +H

== MxH-—""_ Mx(MxH
dat 1+ M, (1+ O:z) ( ) int thermal

e The noise is multiplicative although for small deviations — additive.

e [Jto & Stratonovich interpretation of stochastical differential
equations- two different interpretations of stochastical integrals:

e The Ito evaluates the integral on the lower point of the integration
interval while the Stratonovich - in the middle one.

t

n

+1 1

| Ble.myoaW, ~_[B(,m,)+ B(t,.,m,.. AW,
tn

e The Ito intepretation produces a stochastical drift.

e Stratonovich interpretation should be used, for example the Heun
numerical scheme™.

e However, if after each integration step the magnetisation is
renormalized — normal scheme could be used*>- 5 5
i7 mix+miy+miz

m, =m

"J. Garcia-Palacios et al, Phys Rev B 58 (1998) 14937 D.Berkov et al J.Phys:Cond Mat 14(2002) 281



Generalisation of the Langevin
dynamics to many spin problem:

Although the thermal fluctuations properties were derived for

only non-interacting particles, the same form of the

Langevin-LLG equation is used to calculate the switching properties
even in an interacting system.

e The main assumption is that the noise
IS uncorrelated in time (no memory effects,
separation of timescales.

e Around the equilibrium the formalism of the
Onsager coefficients can be done for many spin
system which shows that for particular damping
(LLG) for many spin system no correlation
between particles exist.

e In a general case - Fokker-Plank equation - no
solution exists.

O.Chubykalo et al J. Magn.Magn.Mat 226, (2003) 28



Langevin dynamics based on the
Landau-Lifshitz-Gilbert equation.

could be formulated for both

*Atomistic spins (localized classical magnetic moments

in the Heisenberg description with J and on-site anisotr. d),
a(A) defines coupling to thermal bath

Characteristic timescale is determined by exchange;

(fs-ps)

*Micromagnetic units (averaged magnetisation, Ms(T)), A(T),
K(T)
The temperature in this case is included twice:

*The damping a contains already thermal averaging: a(T)
"Langevin dynamics defines different trajectories

Characteristic timescale is determined by anisotropy:;
(ps-ns)



Modelling of thermal spinwaves

Langevin dynamics calculations have been carried out
for approximately 10 precessional periods
Fourier transform in both space and time has been

per'for'med m_(F,t) = Zf(a)k,k) expli(fc? — a)kt)J |
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Thermal Langevin dynamics:
micromagnetics versus atomistic spin (Heisenberg)

model
Atomistic (classical) Heisenberg model for FePt (parametrised through ab-initio)

1.0 1

0.8 —

0.6 —

0.4 -

0.2 —

0.0 I I I I I I TS

0 100 200 300 400 500 600 700 800 900
I'[K]
Atomistic Heisenberg model N. Kazantseva et al.,

gives correct Tc Phys. Rev. B 77, 184428 (2008)



Langevin dynamics based on the
micromagnetic Landau-Lifshitz-
Gilbert equation.

Scaling approaches — correctly scale
) M(T), K(T), A(T)
au, _ M.xH —aM. X(M Xg_) with discretization size within micromagnetics.
dT 1 1 1 1 1
=y t/(1+a®), H =(=1/MV)SE/IM))

1P =
FI :ﬁint +l:itherm 08 - 7]
20k, T 5 normalized
<h; >=0, <h (;)hj (t+7) >:#32) 7)0; E O08F unrenormalize i
sT ta %
= 04} .
Lange\.nn dynamu:.s for o2p | -
the micromagnetics does oL | -—
not correctly ’ RET
describe spinwaves: )
. FIG. 1. M vs T curves for the model Permalloy cube, from
* The spectrum is cut . et )
- LLG Eq. (6), with parameters as given in text. and unrenor-
Ond Tc is not correct malized (square symbols) and renormalized (oval symbols)

values of the exchange constant

- density of states is
not correct. G.Grinstein and R.H.Koch, PRL 90 (2003) 207201.



Atomistic modelling of magnetisation

, , reversal |
Field applied at 30° i
|
£ 05 ) - ol
gL TN AN | 64° magnetic moments i/ /
§ o N on cubic lattice 1 474
g5\ T 1/
Eﬂ | lanalytical fclnrm e
e -1 . . . .
0 w w w0 eMagnetisation magninute is not
t y
08 e conserved
s ol T 4 eDamping is enhanced at high T
L a—— 1T =060 — Temperature-dependent magnetisation
B gy [ %ﬁ;;i@% "~ dynamics cannot be described within
E " |yr=in- - standard LLG approach.
0
0 100 200 300 400
time #7.J /g

ield applied at 135¢
F PP O.Chubykalo-Fesenko et al, Phys Rev B 74 (2006) 094436



Longitudinal and transverse relaxation at high T

Wy

A H 250

200 ——

" / M _ _ |
1504 . T -

" )/ c
P - A »
i p 1004 T fxs_|mulat.|{:1r"|) . i
f / = 1 (simulation) \
- ' LB i L '
— equation
4 ‘,‘ ‘ 50 S T L
/ [ ,'I \
4 4 4 e
f-"' | ,ff 0 1 r 111+ I r 1 v I v 1 *t T T T 7T
- 00 02 04 06 08 10 12 14 16 18 20

k TVT

e |ongitudinal relaxation time shows critical slowing down

e fransverse relaxation time breaks down close to Curie temperature

¢ magnitude of magnetisation not constant in time (and space)



LLB eq UatiOn Transverse (LLG) term

Longitudinal term introduces
fluctuations of M

HF"\. 1 X 'XHR-
th = —[m x Hg 4 - ”’H(m i_,ﬁJIll _.?‘m[m m X Heg]

m?2 m?

e macro-spin polarization is m = (S)
e longitudinal (o) and transverse () damping parameters are
given by —ﬂ;ﬂj: a; =a l—%]

e effective field:

1 - m*\ .. oo
— (] — _> <
H,-H- mge; + Mmye, i { 7 ( m. 1 <17,

- J 3

X1 j( = )m T>T.
here H is applied field and m, is zero-field equilibrium spin polarization
the second term is an expression for the anisotropy field

D.Garanin Phys Rev B, 55 (1997) 3050.



LLB versus LLG equation:

e Magnetisation length is not
conserved

e Temperature dependent
micromagnetic parameters

e TWo relaxations: transverse and
longitudinal

e Damping parameters dependence on
temperature

e \/alid both below and above Tc



Langevin dynamics based on the
Landau-Lifshitz-Bloch equation.

ﬁ’ZV[ﬁiXﬁeﬂ]Jr%[”z'(ﬁeﬂ +§I)]%_%{%X[%X(ﬁeﬁ +§¢)]}

: : 2k, T
(&g @) = s 5, 8(t—1") | _en
youM (T =0), P, e AM)~m,
1 A(T) ~ me1.4
2k, T —v—A(T)~mS
B

5. S(t—1)
yaJ_Ms(T:O)I/i '

SHOHGIE

Eq. magnetization

1 8° x 1.5nm discretization
0-21 Langevin + LLB

A £ -
.................

Temperature (K)

D.Garanin, O.Chubykalo-Fesenko, Phys.Rev B 70 (2004) 212409.



COMPARISON BETWEEN ATOMISTIC AND ONE-SPIN LLB SIMULATIONS
atomistic one-spin LLB

MFA
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Multscale approach




Multiscale modelling:

all the parameters were evaluated from atomistic
modelling for FePt with ab-initio input parameters
(Tc= 650K)

Transverse relaxation

Longitudinal relaxation

0.4

0.2

1y,
o

solid line - one spin LLB



CONCLUSIONS

The usual formalism for large-scale calculations of
magnetic properties is Micromagnetics.

Although different theories of magnetic damping
parameters exist, due to a complexity of the problem,
the damping parameter remains phenomenological.

Thermal effects can be introduced, but the limitation of
long-wavelength fluctuations means that the standard
micromagnetics cannot reproduce phase transitions.

The Landau-Lifshitz-Bloch equation is a valid
micromagnetic formalism for high temperatures.
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