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Fe elongated nanoparticles 
prepared by extrusion

Lithographed Fe antidots

Self-organized Co nanoparticles

FePt nanoparticles
Prepared by laser ablation

CoCrPt magnetic
recording media

FePt nanoparticles

Objective: large-scale modelling of complex ferromagnetic materials

SmCo for hard magnets
Very soft magnetic material:
Finemet

3.0µm

Patterned
FePt magnetic media



  

Objective: modelling of Objective: modelling of 
technological processestechnological processes

Conventional magnetic recording

Ultra-fast (fs) Kerr dynamics

Heat-assisted magnetic recording

All-optical magnetic recording



  

IntroductionIntroduction
• Magnetic system is not isolated, the magnetisation change 

can occur at any timescale. 

• Magnetism is a quantum phenomena.

• Ab-initio calculations, although rapidly developing, at the 
present state of art are not capable to calculate 
magnetisation dynamics in complex materials at arbitrary 
timescale and temperature.

• At larger spatial scale,
   relatively large magnetisation 
   volumes (10nm) can be considered 
   as classical particles.



  

The exchange term: micromagnetics The exchange term: micromagnetics 
versus spin modelsversus spin models

•Micromagnetics calculates the magnetostatic fields exactly but 
which is forced to introduce an approximation to the exchange valid 
only for long-wavelength magnetisation fluctuations.

•The exchange energy is essentially short ranged and involves a 
summation of the nearest neighbours.  Assuming a slowly spatially 
varying magnetisation the exchange energy can be written 

Eexch = Wedv, with We = A(m)2 
with
 

(m)2 = (mx)2   + (my)2  + (mz)2

 The material constant A = JS2/a for a simple cubic lattice with lattice 
constant a. A includes all the atomic level interactions within the 
micromagnetic formalism.

•Atomistic models are discrete and use the Heisenberg 
form of exchange
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Micromagnetic models of Micromagnetic models of 
nanostructured materialsnanostructured materials

Models need nanostructure and micromagnetic parameters from experiment



  



  

Natural Natural 
magnetisation magnetisation 

dynamics:dynamics:
100 pico- 100 100 pico- 100 
nano-second nano-second 

timescaletimescale



  

Outline for today: 100ps-Outline for today: 100ps-
100ns (natural) dynamics100ns (natural) dynamics

• Non-thermal dynamics:
• Ferromagnetic resonance
• Basic dynamical equation: the Landau-Lifshitz-

Gilbert
• The problem of magnetic damping (): main 

processes
• Thermal dynamics:
• Principles of the Langevin dynamics.
• Modelling of thermal spinwaves 
• The Landau-Lifshitz-Bloch micromagnetics for 

dynamics close to Tc



  

Ferromagnetic resonance(FMR):Ferromagnetic resonance(FMR):
(Arkadiev, 1911;  Kittel, 1947)(Arkadiev, 1911;  Kittel, 1947)
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Torque on magnetisation

The absorption line width contains 
Information on damping processes

A ferromagnetic body under 
applied field has a maximum 
absorption in frequencies:

The absorption peak contains information
 about anisotropy field.



  

Ferromagnetic resonanceFerromagnetic resonance
• The experiment is normally 

performed in almost saturated 
conditions.

• The absorption peak contains 
information about anisotropy field. 

• The linewidth contains information 
about dissipation processes. 



  

FMR tecniques as a probe of FMR tecniques as a probe of 
magnetisation dynamicsmagnetisation dynamics

Courtesy of G.Kakazei et al



  

The Landau-Lifshitz (LL) and the The Landau-Lifshitz (LL) and the 
Landau-Lifshitz-Gilbert (LLG) equations Landau-Lifshitz-Gilbert (LLG) equations 

of motionof motion
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LL equation

Gilbert equation
(physically more reasonable
for large damping)

How the Gilbert equation could be transformed into the LL equation
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Convenient form of the LLG Convenient form of the LLG 
equationequation::
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The Bloch-Bloembinger The Bloch-Bloembinger 
damping:damping:
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The problem of dampingThe problem of damping::
• Different relaxation processes:
Magnon-magnon scattering
Magnon-electron interactions (especially in 

metals)
Phonon-magnon interactions 

(magnetostriction)
 Impurities 
Extrinsic factors (grain boundary, surface 

roughness, etc.)
Temperature disorder



  

Theory of magnetic Theory of magnetic 
damping constant damping constant ))

Uniform motion Spin waves

Electron systemDissipation in lattice Impurities

Surrounding body



  

Ferromagnets and their spin excitations

1.  Uniform precession (ellipsoid)
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Kittel formula for spinwaves Kittel formula for spinwaves 
dispersion relation:dispersion relation:

  ksAA MAkHHAkHH 

 22

0
2

0

2

2 sin








Applied
field

Anisotropy
field

Exchange
interaction

Magnetostatic
interaction

Anisotropic single crystal ferromagnet: Angle between M and k

 



k





  

Magnons and their Magnons and their 
interactions:interactions:

• Classical spinwaves correspond to quasiparticles 
called magnons.

• Homogeneous magnetisation (FMR mode) 
corresponds to magnon with k=0.

• Linear normal modes (magnons) do not interact. 
Nonlinear processes correspond to magnon-
magnon interactions.

1

2

3

4

magnon scattering
Magnon decay

1
2

3

3
1

2

Two magnon merging

These interactions define kinetic effects (e.x. heat conductivity) and
width and shape of the FMR line and magnon lifetime



  

Nonlinear phenomena: Suhl Nonlinear phenomena: Suhl 
instabilities.instabilities.

• For large excitation power - FMR 
saturation occurs

• If the density of magnons gets higher 
than critical value – the homogeneous 
oscillations become unstable

)()()( kkk  22 0 

k=0
k
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The occurrence of the instability depends on the system 
geometry and is governed by the applied field.
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Second condition,
more easy to meet



  

Inherent relaxation processesInherent relaxation processes
(via spin-wave instabilities)(via spin-wave instabilities)

• Even without external dissipation it is possible to 
reach magnetisation reversal via spin-wave 
instabilities.



  

Main non-inherent relaxation Main non-inherent relaxation 
processes:processes:

o Direct spin-lattice relaxation due to 
nonuniformities

 Heterogeneity of composition
 Polycrystalline structure (grain coundaries, etc.)
 Nonuniform stresses, dislocations
 Geometrical roughness: pores, surfaces etc.

o Indirect spin-lattice relaxation
 Via ions with strong spin-orbital coupling
 Via charge carriers



  

The problem of damping (The problem of damping ())
• Although there exist theories trying to 

evaluate the damping parameter basing 
on a particular mechanism, the 
comparison with experiment remains poor.

• Normally the Gilbert damping  is a 
phenomenological parameter, taken from 
the experiment.

• The values from FMR and direct 
measurement of magnetisation switching 
(fast Kerr measurements) not always 
coincide.



  

W.K.Hiebert etal, PRB, PRL, Nature (2002)
Scanning optical microscope

Observation of the precessional dynamics:

Simulation with LLG

Mx



  

Dinamical effects:
Precesional switching: 

Faster and less field.

Experiment with ps field pulses 
perpendicular to the magnetisatrion
(C.Back et al, Science, 1999)

Simulación LLG

Landau-Lifshitz-Gilbert (LLG):

    effeff HMMHMM
  

•H || M –non-precessional switching
•Prcessional switching is faster, however, the ringing
phenonema occur.

Fe/GaAs



  

Comparison of Comparison of PatternsPatterns
Observed (SEMPA)

Calculated (fit using LLG)
Anisitropies same as FMR

Damping  = 0.017
4x larger than FMR

WHY?
Additional angular momentum
dissipation? - spin current 
pumped across interface  into paramagnet
causes additional damping 
(SPIN ACCUMULATION)

100 m

From Ch.Stamm- SLAC overview



  

Thermal effectsThermal effects



  

Thermal fluctuations play very important Thermal fluctuations play very important 
role in magnetisation dynamics:role in magnetisation dynamics:

At the microscopic level:
• At the equilibrium they are responsible for thermally 

excited spinwaves.
• Spinwaves are responsible for thermal magnetisation 

reversal via the spinwave instabilities and energy 
transfer to main reversal mode.

At more macroscopic level
•Thermal fluctuations are responsible for random walk in 
a complex energy landscape
•Eventually energy barriers could be overcome with the 
help of thermal fluctuations leading to magnetisation 
decay.



  

The theory of thermal magnetization fluctuations of single 
domain, non-interacting particles was introduced by 
W.F.Brown (W.F.Brown Phys Rev 130 (1963) 1677)

“We now suppose that in the presence of thermal agitation, “the 
effective field” describes only statistical (ensemble) average of rapidly 
fluctuating random forces, and that for individual particle this 
expression must be augmented by a term h(t) whose statistical average is 
zero”
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“The random-field components are formal concepts, introduced for 
convenience, to produce the fluctuations M”
W.F.Brown outlined two methods:
-Based on the fluctuation-dissipation theorem
-Imposing the condition that the equilibrium solution of the Fokker-Planck 
equation is the Boltzman distribution

As a result of both in a non-interacting system:  
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Thermal micromagneticsThermal micromagnetics

W.F.Brown, Phys Rev 130 (1963) 1677.

•Initially introduced
for nanoparticles
•This was brought to
micromagnetics.

No correlations
Between time
and different particles!! 



  

Note on the damping and Note on the damping and 
thermal processes.thermal processes.

• In principle, the Gilbert (or other) form of 
damping is as a result of spin coupling 
with the oscillator thermal bath, in this 
sense, the thermal fluctuations are already 
included into the damping term. 

• In some approximations, the undamped LL 
equation is coupled to a system of 
oscillators (phenomenological phonon 
bath) and the resulting LLG damping is 
derived.



  

Fokker-Plank equation for Fokker-Plank equation for 
isolated nanoparticle :isolated nanoparticle :
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The noise can be introduced either to precessional term or to both damping and
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Problem of numerical schemeProblem of numerical scheme

• The noise is multiplicative although for small deviations – additive.

• Ito & Stratonovich interpretation of stochastical differential 
equations- two different interpretations of stochastical integrals: 

• The Ito evaluates the integral on the lower point of the integration 
interval while the Stratonovich – in the middle one.

• The Ito intepretation produces a stochastical drift.

• Stratonovich interpretation should be used, for example the Heun 
numerical scheme*. 

• However, if after each integration step the magnetisation is 
renormalized – normal scheme could be used**. 222
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*J. Garcia-Palacios et al, Phys Rev B 58 (1998) 14937  **D.Berkov et al J.Phys:Cond Mat 14(2002) 281 
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Generalisation of the Langevin Generalisation of the Langevin 
dynamics to many spin problem:dynamics to many spin problem:

• The main assumption is that the noise
is uncorrelated in time (no memory effects,
separation of timescales.
• Around the equilibrium the formalism of the 

Onsager coefficients can be done for many spin 
system which shows that  for particular damping 
(LLG) for many spin system no correlation 
between particles exist.

• In a general case – Fokker-Plank equation – no 
solution exists.

 

Although the thermal fluctuations properties were derived for 
only non-interacting particles, the same form of the 
Langevin-LLG equation is used to calculate the switching properties 
even in an interacting system.

O.Chubykalo et al J. Magn.Magn.Mat 226, (2003) 28



  

Langevin dynamics based on the Langevin dynamics based on the 
Landau-Lifshitz-Gilbert equation.Landau-Lifshitz-Gilbert equation.

could be formulated for both 

•Atomistic spins (localized classical magnetic moments 
in the Heisenberg description with J and on-site anisotr. d),   
defines coupling to thermal bath
Characteristic timescale is determined by exchange;
fs-ps)

•Micromagnetic units (averaged magnetisation, Ms(T)), A(T), 
K(T) 
The temperature in this case is included twice:
The damping  contains already thermal averaging: 
Langevin dynamics defines different trajectories
Characteristic timescale is determined by anisotropy; 
(ps-ns)



  

Modelling of thermal spinwavesModelling of thermal spinwaves
• Langevin dynamics calculations have been carried out
for approximately 10 precessional periods
• Fourier transform in both space and time has been
performed 26 nm
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Thermal Langevin dynamics: Thermal Langevin dynamics: 
micromagnetics versus atomistic spin (Heisenberg) micromagnetics versus atomistic spin (Heisenberg) 

modelmodel  

Atomistic Heisenberg model
gives correct Tc

Atomistic (classical) Heisenberg model for FePt (parametrised through ab-initio) 

N. Kazantseva et al., 
Phys. Rev. B 77, 184428 (2008)



  

Langevin dynamics based on the Langevin dynamics based on the 
micromagnetic Landau-Lifshitz-micromagnetic Landau-Lifshitz-

Gilbert equation.Gilbert equation.
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G.Grinstein and R.H.Koch, PRL 90 (2003) 207201.

Langevin dynamics for 
the micromagnetics does 
not correctly
describe spinwaves:
• The spectrum is cut 
and Tc is not correct
• density of states is 
not correct.

Scaling approaches – correctly scale 
M(T), K(T), A(T) 
with discretization size within micromagnetics.



  

Atomistic modelling of magnetisation 
reversal

643 magnetic moments
on cubic lattice

Field applied at 30o

Field applied at 135o

•Magnetisation magninute is not 
conserved

•Damping is enhanced at high T

Temperature-dependent magnetisation
dynamics cannot be described within
standard LLG approach.

O.Chubykalo-Fesenko et al, Phys Rev B 74 (2006) 094436



  

Longitudinal and transverse relaxation at high T



  

LLB equationLLB equation Transverse (LLG) term

Longitudinal term introduces 
fluctuations of M

D.Garanin Phys Rev B, 55 (1997) 3050.



  

LLB versus LLG equation:LLB versus LLG equation:
• Magnetisation length is not 

conserved
• Temperature dependent 

micromagnetic parameters
• Two relaxations: transverse and 

longitudinal
• Damping parameters dependence on 

temperature
• Valid both below and above Tc



  

Langevin dynamics based on the
Landau-Lifshitz-Bloch equation.
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Multscale approachMultscale approach



  

Multiscale modelling:Multiscale modelling:
all the parameters were evaluated from atomistic all the parameters were evaluated from atomistic 
modelling for FePt with ab-initio input parameters modelling for FePt with ab-initio input parameters 

(Tc= 650K)(Tc= 650K)

solid line – one spin LLB

Longitudinal relaxation Transverse  relaxation



  

• The usual formalism for large-scale calculations of 
magnetic properties is Micromagnetics.

• Although different theories of magnetic damping 
parameters exist, due to a complexity of the problem, 
the damping parameter remains phenomenological.

• Thermal effects can be introduced, but the limitation of 
long-wavelength fluctuations means that the standard 
micromagnetics cannot reproduce phase transitions.

• The Landau-Lifshitz-Bloch equation is a valid 
micromagnetic formalism for high temperatures.

CONCLUSIONS
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