European School on Magnetism 2009

FШF

Inhomogeneities in magnetic systems

Inhomogeneous magnetic systems: control and applications

Alberta Bonanni

Institute for Semiconductor and Solid State Physics, Johannes Kepler University, Linz – Austria

Control over magnetic ions aggregation

e.g. vertical alignement of InAs QDs in GaAs

PbSe/Pb_{1-x}Eu_xTe superlattices

G.Springholz *et al.* Science **282**, 734 [1998] **Review**: J.Stangl, V.Holý, G.Bauer, Rev.Mod.Phys. **76**, 689 [2004]

Ways to control the aggregation of TM

1] growth rate

2] growth temperature

co-doping with donors or acceptors

T. Dietl, Nature Mat. 5, 673 [2006]

L.H. Ye and A. Freeman, Phys.Rev. B 73, 81304 [2006]

Why aggregation of magnatic ions?

Unique aspect of our material systems:

- d-levels in the gap
- contribute to the bonding
- foster attractive force between magnetic ions
- kinetic barrier to the formation of ferromagnetic nanocrystals

By changing the valency

- modification of the attractive force
- influence on the magnetic ions aggregation

3] co-doping with donors or acceptors

A. Bonanni et al. Phys.Rev.Lett. 101, 135502 [2008]

Control by co-doping

- TM-related states reside in the host band gap
- charge state and intersite Coulomb repulsion can be changed by **co-doping** with shallow impurities
- the Coulomb repulsion between TM ions hinders spinodal decomposition

T. Dietl, Nature Mat. 5, 673 [2006]

Control by co-doping

- TM-related states reside in the host band gap
- charge state and intersite Coulomb repulsion can be changed by **co-doping** with shallow impurities
- the Coulomb repulsion between TM ions hinders spinodal decomposition

T. Dietl, Nature Mat. 5, 673 [2006]

Control by co-doping

- TM-related states reside in the host band gap
- charge state and intersite Coulomb repulsion can be changed by **co-doping** with shallow impurities
- the Coulomb repulsion between TM ions hinders spinodal decomposition

T. Dietl, Nature Mat. 5, 673 [2006]

(Zn,Cr)Te – effect of codoping on Cr distribution

Effect of Si-doping

Quenching of ferromagnetic response

Effect of Si-doping [on secondary phases]

Quenching of ferromagnetic response

Reduction/dissolution of secondary phases

Effect of Si-doping [on chemical decomposition]

Si doping – effect on Fe charge state

M. Rovezzi, ..AB, ...Phys.Rev. B 79, 195209 [2009]

Si doping – effect on Fe charge state

M. Rovezzi, ..AB, ...Phys.Rev. B 79, 195209 [2009]

Si doping – effect on Fe charge state

M. Rovezzi, ...AB, ...Phys.Rev. B 79, 195209 [2009]

Si doping – effect on Fe charge state

M. Rovezzi, ...AB, ...Phys.Rev. B 79, 195209 [2009]

Si doping – effect on Fe charge state

M. Rovezzi, ...AB, ...Phys.Rev. B 79, 195209 [2009]

Co-doping and TM aggregation

summary

A. Bonanni et al. Phys.Rev.Lett. 101, 135502 [2008]

Outlook

Outlook: self-organized nanocolumns

M. Jamet et al., Nature Mat. 5, 653 [2006]

Outlook: self-organized nanocolumns

M. Jamet et al., Nature Mat. 5, 653 [2006]

L. Gu et al., JMMM 290, 1395 [2005]

Self-organized nanomagnets in semiconductors

Domain walls for 3D memories

electric current induces the shift of magnetic regions along a wire

HD does not need to spin

increased data storage and speed

G. Meier et al., Phys.Rev.Lett. 98, 187202 [2007]

Unclear:

how to fabricate dense arrays of required nanocolumns

self-organized nanocolumns in DMS [?]

Spin-battery – GaAs:MnAs

P. Nam-Hai et al., Nature 458, 489 [2009]

Functionalities

 nanometallization: nanoelectronics, optoelectronics, plasmonics

- large magnetotransport effects field sensors
- large magnetooptical effects optical isolators, tunable photonic crystals
- spintronic structures
 high density MRAMs/race track memories/logic
- spin battery

 large spin entropy thermoelectricity P. Nam-Hai et al., Nature 458, 489 [2009]

H. Katayama-Yoshida *et al.,* Jpn.J.Appl.Phys **46**, L777 [2007]

In collaboration with

A. Navarro-Quezada, B. Faina, T. Li, M. Wegscheider, D. Leite, A. Grois and T. Devillers

Institute for Semiconductor Physics, Johannes Kepler University, Linz – Austria

R.E. Lechner, and G. Bauer

Institute for Semiconductor Physics, Johannes Kepler University, Linz – Austria

Z. Matěj, and V. Holý

Dept. of Cond. Matter Physics, Charles University, Prague – Czech Republic

M. Rovezzi, and F. D'Acapito

INFM, GILDA ESRF beamline, Grenoble – France

W. Stefanowicz, M. Kiecana, R. Jakieła, M. Sawicki, and T. Dietl Institute of Physics, Polish Academy of Sciences, Warsaw – Poland