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Monte Carlo (MC) methods [1] use random numbers to compute statistical estimates 

for a desired parameter on a sample population.  

 

1. Introduction and elements of statistical thermodynamics 
For magnetic systems, once the Hamiltonian (H) of the system is written, the goal of 

theoretical calculations is to compute the relevant thermodynamic potential.  In the majority 

of the cases we are interested in canonical ensembles, meaning that the system is considered 

in an environment where the temperature, T, the external magnetic field, h, and the number of 

elements in the system, N, is fixed. In such cases the relevant thermodynamic potential is the 

free-energy, F=F(T,h,N). From elementary statistical physics [2] it is known, that the free-

energy, which is a macroscopic quantity, can be calculated from the microscopic elements of 

the model, through the partition function, Z, (sometimes called as the canonical sum).  
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The sum in eq. 2 extends over all possible microstates of the system which are compatible 

with the conditions imposed by the ensemble. Ei is the energy of the system in microstate i. 

and we denoted by k the Boltzmann constant. For simplicity in the following we use the 

kT/1=β  notation.  Once Z is known, all other thermodynamic parameters are easy to 

compute by computing F and using simple thermodynamic relations [2].  

The primary goal of the MC type simulations will be to estimate some statistical 

averages for the magnetic system at various T, h and N values: the average magnetization 

<M>, the average square magnetization <M
2
 >, the average energy <E> and the average 

square energy <E
2
>. From the microscopic elements of the model, these averages can be 

computed as: 
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Here X stands for M, M
2
, E or E

2
, and Xi denotes their values in micro-state i. Once these 

averages are known, the specific-heat and the static susceptibility of the system can be 

computed using the consequences of the general fluctuation-dissipation theorem [2]: 
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The major difficulties in theoretically describing magnetic systems, is that the sums from 

eqs.2 and 3 cannot be analytically calculated. Approximations are thus needed. Due to the 

spectacularly increasing computational power numerical methods gain more and more 

popularity. A simple estimation of the sum by taking into account all microstates is 

impossible, since the number of elements in the sum is exponentially increasing with the 

system size. Exact enumerations for very small systems ( 20≈N ) is already time-consuming 

on modern supercomputers.  Wise computational methods are needed to estimate quickly 

these sums. MC methods [1] are one of these.      
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2. One dimensional MC Integration 
   Given a function f(x) we intend to compute it’s integral, I,  on the [a,b] interval:  
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dxxfI )(     (eq. 5) 

The simplest numerical estimation method for this integral is by considering a uniform 

mesh of n boxes on the [a,b] interval and estimate the value of the function in some points 

in these boxes. The trapezoid sum and Simpson’s methods [3] are based on this 

deterministic approach. Another, non-deterministic possibility is to generate randomly n 

points on the [a,b] interval, ],[ baxi ∈  and calculate f(x) in these. When these points are 

generated with a uniform distribution the )(xρ probability density for having a point with 

coordinate x is: )/(1)( abx −=ρ .  In such case the integral can be estimated as: 
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    The strong law of large numbers [4] guarantees us that for a sufficiently large sample one 

can come arbitrary close to the desired integral. A natural question that arises at this point is, 

how fast the convergence is….or how big n should be to obtain a reasonable estimate for I ?  

The nature of this convergence will tell us whether this method is useful for a numerical 

estimation.  The converges is usually poor for .)( Constx =ρ  The convergence becomes 

better if the shape of )(xρ  approximates the shape of the f(x) function on the [a,b] interval. 

Particularly, the convergence is infinitely rapid if )()( xfx =ρ   (this choice however is not 

possible since, normalizing )(xρ  is equivalent with calculating the desired I integral). The 

important sampling Monte Carlo method will calculate the I integral by sampling on 

random points on the [a,b] interval according to a )(xρ  distribution, which approximates 

the shape of |f(x)| (points are generated with a higher probability in those regions where 

|f(x)| is large).  If we generate the xi points according to the )(xρ  distribution: 
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The convergence is very fast thus, if )()( xfx ≈ρ . 

 

    3.  The Metropolis MC method 
   In statistical thermodynamics we intend to calculate integrals (or sums) like: 
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 with ∫
Ω

= dxxHuZ )]([ , where the x points are elements of a 

very high dimensional state-space (dimensionality of the order  of  N).  For magnetic systems 

in the {T,h,N}-canonical ensemble we have: )](exp[)]([ xHxHu β−= . We will use the 

important sampling method to calculate these integrals. The shape of the function under the 

integral is dominated by the u[H(x]] term, we choose thus )(xρ  with shape close to )]([ xHu : 
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   (eq. 8) 

For the particular choice: ZxHux /)]([)( =ρ the convergence is infinitely fast, and one gets: 
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There is however a problem with this choice, since we do not know Z (if Z would be known 

the problem is solved, and no further calculations would be needed). The question is thus 

how can one generate the xi points in the state-space according to the ZxHux /)]([)( =ρ  

(eq. 9) normalized probability distribution without the a-priori knowledge of the Z partition 

function? The answer was given by Metropolis et. al [5]. Their basic idea was to use a 

Markov process [6] for this, so that starting from an initial x0 state, further states are 

ultimately distributed according to )(xρ .  To generate a Markov chain one needs to specify 

the )'( xxW →   transition probabilities [6] from one micro-state to another. In order that the 

probability density of the generated states be )(xρ , it should be satisfied:    

1. The Markov chain is ergodic (any state point should be reachable from any other 

state-point through the Markov chain) 

2. For all possible x microstates:  ∑
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3. For all possible x microstates:  ∑
Ω∈

=→
'

)()'()'(
x

xxxxW ρρ  (eq. 11) 

Instead of condition 3 (eq. 11), a stronger but simpler condition can be used, the detailed 

balance:   )'()'()()'( xxxWxxxW ρρ →=→    (eq. 12)         

 By constructing such a Markov chain one will be able to generate state-space points 

according to the desired )(xρ  probability density, without the prior knowledge of Z. For 

example, if one considers a system in a canonical ensemble ( [ ])(exp~)]([ xHxHu β− ) an 

immediate choice to satisfy (eq. 12) is the one chosen in [5], i.e. the Metropolis algorithm 
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where, )()'()',( xHxHxxE −=∆ . 

A simple Metropolis Monte Carlo method for calculating the desired statistical averages 

would have thus the following structure: 

 

 
 

 

 

        

 

 

 

 

 

Initially the system is „heated up” with a large number of transient steps, so that the systems 

approaches the desired )(xρ  distribution. During these transient steps we repeat the algorithm 

from 1�7 without considering the generated points for the average in eq. 9. 

 

4. The Metropolis MC algorithm for localized Ising spin systems 

As an example, let us consider here the simplest two-dimensional spin system capable of a 

second order ferromagnetic-paramagnetic phase-transition: the 2D Ising model without an 

external magnetic field.  The Hamiltonian of the system writes as: 

j
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  (eq. 14) ,  where the summation is on all nearest-neighbor spin pairs,  

1±=iσ  are two-state Ising spin variables and J>0 is the ferromagnetic coupling constant. In 

1. Design an ergodic Markov process on the possible microstates (each states should 

be reachable from the others). 

2. Specify an initial x microstate for starting. 

3. Choose randomly a new x’ microstate (preferably so that: 0)'( >→ xxW ).   

4. Compute the value of )'( xxW → . 

5. Generate a uniformly distributed ]1,0[∈r  random number. 

6. If Wr ≤ accept as new state x’ and consider the x’ point in the average from eq. 9. 

7. If Wr > the system remains in x, and count again x in the average from eq. 9. 

8. Repeat steps 1� 7 many times until the average converges. 



case the Hamiltonian is more complicated (interaction terms with the external magnetic field, 

crystalline anisotropy terms or long-range dipolar magnetic interaction terms are considered) 

the method remains similar.  We consider the problem on a square-lattice with sizes: 

LLN ×= . The following averages have to be calculated with the Metropolis sampling at 

various temperatures: 
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The order parameter characterizing the magnetic order for J>0 can be defined as: NMm /= . 

The Metropolis Monte Carlo algorithm is straightforward then:  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Finite-size effects 

The results of statistical thermodynamics are valid only for thermodynamic systems, meaning 

that one works in the ∞→N  limit. Computer simulations cannot be made on infinite systems, 

so due to the finite size of the simulated lattices, finite-size effects are expected. The  

divergence in the specific heat and susceptibility (expected for infinite systems) at the critical 

(Curie) temperature (Tc),  will not appear in MC simulations on a finite lattice (Fig. 1).  

      
Fig. 1. Finite-size effects for Metropolis MC simulations on a 2D Ising model Results for the order 

parameter (m), specific (CV) and susceptibility (chi) are plotted as a function of temperature ( T/k). 

(J=0.44 was chosen, so that 1)( =∞=LTc ) for different lattice sizes, L. 

 

The reason for this is the obvious cutoff of the correlation length by the finite lattice size. 

Instead of a divergence at Tc, a peak is obtained in the vicinity of Tc. The height of the peak 

1. Fix a temperature (T).  

2. Consider an initial spin configuration ( }{ iσ , for example consider for all Ni ,1=  �  1+=iσ ) 

3. Calculate the initial value of E and M. 

4. Consider a new spin configuration by virtually “flipping” one randomly selected spin.  

5. Calculate the energy E’ of the new configuration, and the energy change, E∆ , due to this spin-

flip. 

6. Calculate the Metropolis  )'( xxW →  probabilities for this change. 

7. Generate a random number r between 0 and 1. 

8. If  Wr ≤  accept the flip and update the value of the energy to E’ and magnetization to M’ 

If  Wr > reject the spin flip, and take again the initial E and M values in the needed averages.   

9. Repeat the steps 4 - 8 many times (“heat up” the system before averages are calculated)  

10. Repeat the steps 4 - 8 by collecting the values of E, E
2
, M, M

2
, for the needed averages. 

11. Compute the averages for a large number of microstates. 

12. Calculate the values of <m>, <E>, <Cv> and <χ> using the given formulas at this T. 

13. Change the temperature and repeat the algorithm for the new temperatures as well. 

14. Construct the desired <M(T)>, <E(T)>, <Cv(T)>, <χ(T)> curves  

 



and it’s location is changing with lattice size, L (see Fig. 1), so a carefull extrapolation 

for ∞→L  is needed [7]. 

 

6.  Efficient MC techniques  
The simple Metropolis algorithm as described above suffers from a series of drawbacks, 

solved by other MC algorithms.  

-  At low temperature the algorithm is inefficient due to the fact that after the equilibrium is 

reached (spins are ordered) most of the spin-flips are rejected. Long simulations are needed to 

get a reasonable estimate for the averages. This drawback is eliminated by the BKL MC 

algorithm [8] . 

-  In the neighborhood of Tc the Metropolis algorithm is again inefficient due to the critical 

slowing down. This critical slowing down is due to the fact that for the Metropolis algorithm 

the dynamical critical exponent is large (z=2) leading to quick divergence of the relaxation 

time. Many Metropolis MC steps are needed to generate statistically independent 

configurations. This problem is partially solved by the cluster algorithms elaborated by 

Swendsen and Wang [9] or Wolff [10]. 

-  In the Metropolis MC simulations a lot of information is wasted. We use just the first and 

second moments of the magnetization and energy, however their distribution functions is also 

available. In the histogram and multi-histogram MC methods [11] one will compute averages 

at various temperatures from simulation results at only one fixed temperature.     

- Quantum-statistical systems (Hubbard model, Stoner model, T-J model, etc..) can be also 

studied by MC techniques. For such problems the Quantum Monte Carlo methods are suited 

[12]. 

- Frustrated, spin-glass type systems can be studied by several MC algorithms. One of these is 

the simulated annealing method [13]. 

 

References: 
 [1]  K. Binder and D.W. Hermann, Monte Carlo Simulations in Satistical Physics. An introduction 

(4th Edition) Springer (2002) 

 [2] C. Kittel and H. Kroemer, Thermal Physics (2nd, Edition),  Freeman, (1980) 

 [3] R. Hamming, Numerical Methods for Scientist and Engineeres (2nd Edition), Dover, (1987)   

 [4]  W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, (3rd Edition), 

Wiley, (1968) 

[5]  N. Metropolis, A.W. Roesenbluth, M.N. Rosenbluth, N. Marshall, A.H. Teller and E. Teller, 

J. Chem. Phys., vol. 21, 1087 (1953) 

[6] The Markov process is a simple stochastic process where the statistical properties of the immediate 

future are uniquely determined from the present, regardless of the past. Let us denote by 

),...,,|( 011 xxxxP nnn −− the probability that xn is the new state if previously the system was in states: 

x0, x1, ..., xn-1. For a Markov process: )()|(),...,,|( 11011 nnnnnnn xxWxxPxxxxP →== −−−− . 

[7]  J.L. Cardy, Finite-size scaling, North-Holland, (1988) 

[8]  A.B. Bortz, M.H. Kalos and J.L. Lebowitz, J. Comp. Phys., vol. 17, 10 (1975) 

[9]  R.H. Swendsen and J-S. Wang, Phys. Rev. Lett. Vol. 58, 86 (1987) 

[10] U. Wolff, Phys. Rev. Lett. 62, 361–364 (1989) 

[11] A.M. Ferrenberg and R.H. Swendsen; Phys. Rev. Lett., vol. 61, 2635 (1988) 

[12] J. Tobochnik, G. Batrouni and H. Gould, Computers in Physics, vol. 6, 673 (1992) 

[13] S. Kirckpatrick, G.D. Gelatt and M.P. Vecchi, Science, vol. 220, 671 (1983) 

 

   

 

 


