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The goal of theory is to make things as simple as possible, but no simpler. attr. A. Einstein 
 
At the start of a School on ‘Models in Magnetism’, it is necessary to fix some of the basic 
concepts. We are concerned with magnetism in solids, so we need to have a some idea of 
what is is, and how it arises.  
 
The beginnings. 
A basic relation, discovered by Oersted in 1821, is the connection between magnetism and 
electric currents. His discovery triggered the electromagnetic revolution which led to the 
electrification of the planet. It resolved the age old puzzle regarding the analogy between 
electrostatic and magnetic forces. Ampere then found that a magnet behaves like a current-
carrying coil. The relation between a current loop of area A carrying a current I and the 
equivalent magnetic moment m is  
 
     m = IA      (1) 
 
This truth is nicely enshrined in our  preferred system of units. Magnetic moment is 
measured in A m-1. More generally, the relation between magnetic moment and current 
density j is m = (1/2)∫ r × j(r) d3r. 
 
Magnetization 
The next step is to define magnetization M in a volume ΔV as Δm/ΔV. We need to think 
carefully about the volume. If we choose it to be too small, we run into wild spatial and 
temporal fluctuations as we approach the atomic scale. If we choose it to be too big, we 
risk missing the sponateous magnetization in domains. A good choice is the mesoscopic 
scale, or the continuum approximation of magnetostatics. Magnetization can be induced by 
a magnetic field in a paramagnet or diamagnet, or it can arise spontaneously in a 
magnetically ordered material like cobalt or magnetite. The relation between magnetization 
and current density is  

jM = ∇  × M      (2) 
Magnetic fields 
Magnetic fields are created by electric currents. The field in free space created by a current 
element Idl  is given by the  Biot-Savart law; 

 δB = -(µ0/4π) I(r × dl)/r3    (3) 
Here we have chosen to use the B-field, which is measured in Tesla. The constant µ0 which 
appears in the equation is defined to be exactly 4π 10-7 TmA-1.  In free space, the B and H 
fields are practically interchangable, with the relation  
    B = µ0H      (4) 
H, like M is measured in A m-1. In a material medium, the relation is  
    B = µ0(H + M)     (5) 
The fundamental magnetic field is B. This is because there are no magnetic poles in Nature 
(or if they exist, we never managed to find them. String theorists are convinced they must 
be somewhere). Contrast this with electricity, where we have plenty of electric charges. 
 



                      
 Fig 1. B, H and M for a uniformly-magnetized ferromagnetic bar. The vectors illustrate 
Eq.(5) 
The absence of magnetic poles is enshrined in one of Maxwell’s equations 
    ∇.B = 0      (6) 
to be contrasted with the equation for the electric field in a medium ∇.D = ρ, where ρ is the 
electric charge density. B can be derived from a vector potential A, B = ∇ × A. 
So why do we need an H field? The standard answer is that in Ampere’s law, which relates 
B to j in a steady state, 
    ∇ × B = µ0j      (7) 
there are really two kinds of current. One is associated with the magnetization of the 
medium (jM) where the currents are unmeasurable, because they are atomic in origin, while 
the other kind, the free currents (jf) are the usual currents that flow around in conductors 
and can be measured with an ammeter. Hence, ∇ × B = µ0(jf + jM). From (2), (5) and (7), 
we find  
     ∇ × H = µ0jf      (8) 
This is Ampere’s law for the H-field. The significance of H is that matter responds to the 
H-field acting in the material. Hysteresis loops are plotted as M versus H. In the continuum 
approximation, the internal H field is the sum of an externally-applied field H′ and the H- 
field created by the magnetized material, as shown in Figure 1. The H-field created by 
magnetized material is known as the stray field outside, and the demagnetizing field (Hd) 
inside. Mathematically, we can represent the sources of the H-field as fictitious ‘magnetic 
charge’. The surface charge density is σm = M.en and the volume charge density is  ρm = 
∇.M. The field due to a fictitious magnetic charge qm is  H = qmer/r2. Positive and magnetic 
charges are the fabled ‘North’ and ‘South’ magnetic poles, which can be considered as the 
sources and sinks of the H-field. The main use of magnetic charge is as a computational 
convenience, to calculate the H-field. It can also be deduced from a magnetic scalar 
potential φm;  H = -∇φm , but only when there is no contribution from electric currents. 
 
Response to a field 
For paramagnetic and diamagnetic materials, the linear response of the magnetization to 
the field can be expressed in terms of the susceptibility χ. Defined by the equation 
     M = χH       (9) 
the susceptibility is a dimensionless quantity. There are several other definitions! In (9) the 
susceptibility is usually taken to be a scalar. For a crystal it is a second-rank tensor. 
More generally, the response of a magnetically-ordered material to a magnetic field is 
nonlinear, irreversible and time-dependent. This is the hysteresis loop, which is the true 
icon of magnetism. 
    M  = M(H,t)      (10) 
The energy of a moment in an external field is –m.B, and the associated torque is m × B. 
The energy density E J m-3 of already-magnetized material in an external field H′  is  
 



 
Fig 2. A hysteresis loop. Domain structures for a polycrystalline sample are indicated. 
 
    E = -µ0M.H′      (11) 
Whenever the moment is induced by the field, as it is for a paramagnet, or whenever the 
field is created by the material itself, as it is for the demagnetizing field, a factor ½ must be 
included in the energy expression.  
Energy in magnetic systems is a subtle and sometimes confusing issue. The point is that all 
magnetism basically is due to electric currents, and the magnetic force qv × B on a charge 
q moving with velocity v acts perpendicular to the velocity, and therefore does no work on 
the magnetic system. Overall, energy is conserved, but is may shift from one place to 
another. The energy density associated with a magnetic field is -½µ0H2. 
Magnetostatics is the branch of magnetism associated with energy minimization in static 
conditions. The basic equations are (6) and (8), and the total energy to be minimized 
includes (11) and the energy density in the demagnetizing field –½µ0M.Hd, as well as 
terms representing exchange, anisotropy and megnetostriction. 
  
Origin of magnetism 
The origins of magnetism were finally understood in the 1920s.  In quantum mechanics, 
magnetic moments are associated with the angular momentum of charged particles, which 
is somehow equivalent to an electric current. The reality of the link between magnetization 
and angular momentum was demonstrated by the Einstein-de Haas experiment. The 
constant of proportionality is the gyromagnetic ratio γ. In solids, the charged particles we 
have to consider are the electrons. Their angular momentum has two distinct origins. One 
is the intrinsic spin angular momentm of ½ h, the other is the orbital angular momentum, 
whose z-component is quantized in units of h. The gyromagnetic ratio turns out to be 
almost exact twice as great in the first case (e/m) as in the  second (e/2m). Hence the unit of 
magnetic moment for the electron is the Bohr magneton, µB. 
    µB = eh/2m      (12) 
The value of the Bohr magneton is 9.27 10-24 A m2. 
The half-integral angular momentum of the electron was shown by Dirac to follow as a 
consequence of relativistic quantum mechanics. Theorists consider the electron as a point 
particle that possesses charge, mass and angular momentum. It helps to imagine a tiny 
spinning object, but it is only a prop for the imagination. Pauli formulated three spin  

 



Fig 3. The orbital (left) and spin (right) angular momentum of an electron. 
 
matrices which, when multiplied by h/2, represent the three cartesian component of the 
spin angular momentum. 

                  (13) 
The orbital angular momentum is visualized in terms of the orbital motion in Bohr’s 
planetary model of the atom. Its components are represented by three (2l+1)×(2l+1) 
matrices. l is the orbital quantum number; the spin quantum number s =1/2 
 
Magnetism of the hydrogenic atom 
A single electron in the central potential of an atomic nucleus Ze/4πε0r is the starting point 
for understanding chemistry and magnetism. Schrodinger’s equation HψI = εiψI, where H  
is the Hamiltonian, εi is an eigenvalue and ψI is an eigenfunction known as the electron 
orbital is conveniently written in spherical polar coordinates r, θ, φ : 

    (14) 
Here the angular variation is contained in the orbital angular momentum operator l2.  

                            (15) 
Solutions of the equation are of the form ψ (r,θ,φ) = R(r)Θ(θ)Φ(φ). The angular part is a 
spherical harmonic Yl

m, where l and m are the orbital and magnetic quantum numbers. 
  Yl

m = cl,mPl
m(θ)exp(imφ)      (16) 

Here cl,m is a normalization constant, Pl
m is the associated Legendre polynomial which 

depends only on θ, and the exponential part depends only on the azimuthal coordinate φ 
and the magnetic quantum number m. The orbitals with l = 0, 1, 2 and 3, which are known 
as s, p, d, f orbitals for historical reasons, are respectively 2, 6, 10 and 14 fold (2l+1 fold) 
degenerate. The orbitals with a given value of n (the principal quantum number, which 
determines the radial part of the wavefunction R(r)) and l form a shell, e.g. 2p, 3d ….. 
The single-electron orbitals can each hold two electrons, one with spin up, ms = -½ (↑), the 
other with spin down (↓), ms = ½.  The sign convention accounts for the fact that magnetic 
moment and angular momentum are oppositely directed because of the negative charge of 
the electron 

   
 Fig 4. Single-electron orbitals for the free atom  
 
Magnetism of multi-electron atoms 
When there are many electrons on the atom, Coulomb interactions among them complicate 
the solution of the Schrodinger equation. Nevertheless, the one-electron orbitals provide a 
basis for determining the electronic structure of the atom, and hence the periodic table. The 
blocks of atoms there are 2, 6, 10 or 14 atoms wide.   



From a magnetic viewpoint, the key question is how do the spin and orbital moments of 
the electrons add together? Magnetism is associated with partly-filled shells, because when 
the orbitals are all filled with two electrons each with opposite spin there is no spin 
moment, and when the ± ml orbitals are occupied, there is no net orbital moment. The 3d 
and 4f shells are the ones of most interest. Hund developed his empirical rules to decide the 
orbital occupancy, and hence the magnetic moment of the ground state of a free atom with 
an unfilled shell. 

- First maximise the spin by adding the spin angular momenta of the electrons, 
consistent with Pauli’s principle (the spins of two electrons occupying the same 
orbital must be opposite) to yield the total spin angular momentum S 

- Next, couple orbital angular momenta of the individual electrons to give the 
maximum resultant orbital angular momentum L, consistent with the first rule. 

- Finally couple L and S together to yield the total angular momentum J. J = L+S if 
the shell is more than half-full and J = L-S otherwise. 

There are higher-energy optically-excited states, but for magnetism we need only consider 
the ground state. The last rule is a result of the weak spin-orbit coupling that can be 
understood by considering the nucleus from the electron’s standpoint. The orbiting charged 
nucleus is like a current loop that creates a magnetic field at the electron, coupling its spin 
moment to its orbital moment. Represented by the Hamiltonian Hso=ΛL.S, this 
interacation is much weaker than the Coulomb correlations among the electrons, 
represented by the Hamiltonian Ho including the electrostatic interactions  that give rise to 
the first two rules.  
There are four orbital  ground states possible for 3d ions, with A, D and F terms, 
corresponding to L = 0 (d5), L = 2 (d1, d4, d6, d9) and L = 3 (d2, d3, d7, d8)  

 
The crystal field  
Now we take a step closer to reality, by packing the atoms or ions into a solids. Unpaired 
electrons in an outer s shell tend to delocalise and form an unpolarized metallic band with 
equal ↑ and ↓ populations. Unpaired electrons in an outer p shell tend to form covalent 
bonds, pairing up with electrons from neighbouring atoms. The unpaired electrons in outer 
d and f shells, which have charge density ρ0(r) find themselves subjected to electrostatic 
interactions with the electrons belonging to neighbouring atoms or ions. It is convenient to 
separate the two sets of charges, and consider the potential ϕcf(r) = ∫{ρ(r′)/4πε0|r-r′|}d3r′,  
created by the neighbouring charges ρ(r′) around the central atom, which has the point 
symmetry of the site. The crystal field interaction is represented by the Hamiltonian 
    Hcf =  ∫ρ0(r) ϕcf(r)d3r           (17) 
Site symmetry and coordination depends on bond type. The two main classes of magnetic 
crystals are metals and ionic insulators. In the first case, the coordination is usually 8- or 
12-fold. In the latter, the coordination of cations by anions is often 6-fold (octahedral), and 
sometimes 4-fold (tetrahedral) or 8-fold (cubic). Octahedral and tetrahedral sites are typical 
of oxides and fluorides. Both have cubic point symmetry, when undistorted.The crystal -   

   
Fig 5. Tetrahedral and octahedral sites, showing how each has cubic symmetry  

Table: Interaction energies for 3d and 4f ions(K)  



field interaction is much weaker for 4f  than for 3d ions because the 4f shell is screened by 
the outer 5p electron shells. In 3d ions, the 3d shell is the outermost shell. 
 
Effects on 3d ions 
Here the crystal field interaction is much stronger than the spin-orbit interaction. The one-
electron eigenstates of the crystal field  Hamiltonian are combinations of the free ion basis 
states, which reflect the symmetry of the lattice site. For p electrons, these the new orbitals 
are px, py and pz, which remain degenerate in a cubic site.  For d orbitals they are the dxy,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6. One-electron orbitals in the crystal field 

 
Fig. 7 Splitting of one-electron energy levels in tetrahedral, octahedral and cubic sites 
 
The one-electron picture allows us to deal with D terms, the d1 ions, bur also  d4 and d6 
(hole or electron in a half-filled shell) and d9 (hole in a filled shell). For the F terms, the 
strong interelectronic correlations must be considered, and the ground state and excited 
states are shown on the Tanage-Sugano diagrams.  The one-electron picture still has merit 
if a set of ↑ levels like those in Fig 7 is separated from a similar set of ↓ levels by the on-
site exchange energy Uex, which is the interaction responsible for Hund’s first rule.  The 
high-spin/low-spin crossover occurs when Uex  exceeds Δcf  
 
Effects on 4f  ions. 
Here J is remains the good quantum number, and the effect of perturbation of the J states 
by the crystal field is introduction of magnetocrystalline anisotropy. For practical 
calculations, the method of operator equivalents On

m, which are combinations of the 
angular momentum operators is recommended. The crystal field Hamiltonian is then 
     Hcf = Bn

m On
m    (18) 

where the coefficients Bn
m depend on the crystal site and the rare earth ion occupying it. 

 
Further Reading 

 

dyz and dzx group and the dx2-y2 and d3z2-r2 
group. The former, known as t2g orbitals 
are lower in energy on an octahedral site, 
whereas the latter e orbitals are lower in 
energy on a tetrahedral site. The crystal 
field splittings Δcf are indicated in Fig 6. 
They are of order 1 eV. The splittings are 
partly ionic and partly covalent in nature, 
because of the different overlaps of the two 
groups with the ligand orbitals. 
The main consequences are: 

— the orbital angular momentum is 
quenched. The 3d ions behave as if 
they were spin-only ions, which 
greatly simplifies matters  

— Magnetocrystalline anisotropy 
arises as a consequence of 
perturbations due to Hso.  

Δcf 
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A note on units. 
Magnetism is an experimental science, intimately connected with electricity. There are 
compelling reasons to adopt the same unit system, SI, that is used in other branches of 
science. These include: 

— consistency with education in high school and university 
— relation to quantities measured by laboratory instruments (volts, amps, seconds ..) 
— ability to check the dimensions of any expression by inspection. 

Yet, for historical reasons, much of the research literature is written using the obsolete cgs 
system, or a confusing mixture of SI and cgs units. In order to translate them into SI, a 
brief guide to the main conversions is given below. 
 

 M M σ B H χ µ qm A φm 
 moment Magnet-

ization 
Specific 
magnetization 

B-field H-field Suscept- 
ibility 

Perme- 
ability 

charge vector  
potential  

Scalar 
potential 

SI unit Am2 Am-1 Am2kg-1 T Am-1 — TmA-1 Am Tm A 
cgs unit emu emu/cc emu/g G Oe — G/Oe emu/cm G cm Oe cm 

conversion* 10-3 1000 1 10-4 1000/4π 4π 4π 10-7 0.1 10-6 100/4π 
• Multiply the cgs quantity by this factor, to obtain the SI quantity. 

The cgs version of Eq 5 is B = H + 4πM 
 

 
 
 
 




