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The present Summer School is focused on the basic problems in magnetism, with the 

topological  developments  in the fields.  The topics have in view basic concepts,  exchange 

interactions  and  magnetic  ordering,  strongly  correlated  systems,  magnetism  in  reduced 

dimensions, as well as the effects of coupling with lattice. 

In introduction, it is my intention, to present shortly some models used in describing 

the magnetic behaviour of the matter. This is only a short review on the basic features and of 

connection between the models, many of these being more depth analysed in the following 

lectures. A schematic representation of models is given in Fig.1. Two types of  basic models, 

those considering that the magnetic moments are localized at lattice sites and band models, 

respectively, were elaborated. These are situated in the right part of figure (localized) and left 

part  (band).  The  models  having  features  from both  above  descriptions  are  plotted  in  the 

intermediate regions. Herring [1] in the paper “The d electrons states in transition metals”, 

compared  the  models  used  in  magnetism,  particularly  in  metallic  systems,  with  cocktails 

having different ingredients as bands, correlations, coupled atoms and valence bonds. Mixed 

in different proportions lead to itinerant, minimum polarity, s-d(f) and valence bonds models.

In describing the magnetic properties, there are two independent concepts, namely, the 

dimensionality of the system, d, and the number of magnetization components, n. When the 

spins are coupled following all the space directions we have d=3. When the spins are coupled 

in  a  plane,  n=2  and  when  the  interactions  take  place  along  one  direction  we  have  d=1 

(magnetic chain). A polymer chain has d=0. Higher values than n=3 are considered in phase 

transitions description. In the Heisenberg model we have three independent components of 

magnetization  (n=3),  in  X-Y model  two  (n=2)  and  in  Ising  model,  the  magnetization  is 

oriented along one direction (n=1). A value n=-2 is characteristic for Gaussian model and 

n∞ for a spherical model.

The localized  models  essentially  admit  that  the magnetic  moments  are  situated on 

lattice  sites.  The  exchange  interactions  in  metallic  systems  can  be  described  by  direct 

interactions [2] or by indirect exchange by means of conduction electrons [3]. In magnetic 

insulators, superexchange [4,5] or double exchange [6] mechanisms were considered.
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The  short  range  exchange  interactions,  commonly,  can  be  described  starting  from 

Heisenberg Hamiltonian  
j,i

jiijJ SSH , where Jij is the exchange integral describing the 

interactions between the spins Si and Sj (only spin moment was considered, as in 3d metals). 

It  is  a  difficult  matter  to  compute  exactly  the  magnetic  properties  starting  from  above 

Hamiltonian since there we have a many body problem. The Ising model (n=1) can be solved 

exactly in case of unidimensional and some bidimensional lattices. The linear Ising lattice is 

not  ferromagnetic,  at  finite  temperatures.  The  temperature  dependence  of  the  magnetic 

susceptibility is given by  T-1exp(2J/kBT). In case of quadratic bidimensional lattice,  the 

temperature dependence of magnetization is described by M=[1-(sh2k1sh2k2)2]1/8, were k1=J1/

kBT and k2=J2/kBT, the J1 and J2 being the exchange integrals in the two directions of quadratic 

lattice [8]. Exact solutions were also obtained for other bidimensional lattices [9]. Rigorous 

solution has been obtained in spherical Ising model [10]. The predicted magnetic behaviour of 

tridimensional Ising lattice was analysed by series  development methods around the Curie 

point or at low temperatures.

A class of approximations,  starting from Heisenberg Hamiltonian, use the effective 

field-based analysis. In this case, the exchange interactions between a finite number of spins 

are exactly solved, while the interactions with the atoms of remaining crystal are replaced by 

an effective field. When only a single atom is considered, the molecular field approximation 

model is present [11]. According to Weiss [11], the effective field acting on the atom, in each 

domain, is proportional to the magnetization, M, Heff=NiiM, where Nii is the molecular field 

coefficient. The Nii thus introduced, acts at the level of each particle, and ensures the self-

consistency.  The  molecular  field  coefficient  is  proportional  to  the  exchange  integral 

Jij(expected to be the same for a crystal) 1
0

2
B

2
ijij )μμ(Ng2zJN  , where N and z are the total 

number  and  number  of  neighbouring  atoms,  respectively.  The  model  predicts,  at  low 

temperatures,  a  dependence  of  the  form  ..
T
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   and  at 

temperatures  close  to  Curie  point,  M(T)/M(0)(TC-T) with  =1/2.  Experimentally  was 

shown, at low temperatures, a T3/2 dependence of magnetization and close to TC a value =1/3. 

The model, at T>TC, but close to TC, gives  -1=C-1(T-TC) with  =1, while experimentally a 

value =4/3 was shown. 

Fig.1
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The above predictions were improved when the exchange interactions between a finite 

number  of  atoms  were  considered,  in  addition  to  an  effective  field,  at  showed  by  Néel, 

Oguchi, Bethe-Peierls-Weiss methods or the constant coupling approximation.

The magnetic behaviour, at low temperatures, in case of localized moments was also 

analysed  in  spin  wave  model.  The  rigorous  solutions  of  the  Heisenberg  model,  can  be 

obtained  if  all  spins,  with  exception  one,  are  paralelly  aligned.  A  T3/2 dependence  of 

magnetization is predicted [12], in agreement with many experimental data. 

Other approximate solutions of the Heisenberg Hamiltonian were obtained by series 

development method, around the Curie points or by using the Green function method. 

In case of rare-earth metals, the spatial extension of 4f shell is small, unlike the 3d 

metals. Their properties were described in a s-d(f) model, the interactions between localized 

moments  being  realized  through  the  conduction  electrons  [3].  In  the  second  order 

approximation of the Hamiltonian, the spin polarization has an oscillatory dependence. The 

Hamiltonian  can  be written,  in  analogy with  Heisenberg  one,  as   mnnm
)2( )R(J SSH  

where J(Rnm)(xcosx-sinx)x-4. By x is denoted kFRnm where Rnm is the distance between the n 

and m atoms and kF is the Fermi wave vector. When both spin and orbital contributions are 

present  S  can  be  replaced  by  J.  The  model  can  be  used  also  to  analyse  the  exchange 

interactions in dilute magnetic alloys.

The band models were also used to describe the magnetic properties of some systems, 

particularly 3d alloys[13]. These models were elaborated to explain the noninteger number of 

Bohr magnetons, the presence of 3d bands, having widths of the order of 1 eV as well as the 

data obtained from transport properties. The presence of the magnetic moment was shown 

when  the  Stoner  criterion,  Jη(EF)≥1,  is  obeyed.  By  J  is  denoted  the  phenomenological 

interaction constant between two electrons having parallel spins, defined when the exchange 

energy of two electrons having antiparallel spins is zero and η(EF) is the state density at the 

Fermi level. A T2 variation of magnetization was predicted, as for example, experimentally 

observed, in ZrZn2.

The Hubbard model  [14]  is  used to  describe  the magnetic  behaviour  of  transition 

metals,  of  their  oxides,  metal-nonmetal  transition  as  well  as  magnetic  transitions.  In  this 

model,  the  Hamiltonian  takes  into  account  the  energy  of  electrons  in  band  and  their 

interaction energy. 

There are models which consider both band and localized features as those developed 

by Friedel [15], Stearns [16] or the Zener modified model [17].
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The magnetic  properties of dilute  3d magnetic alloys  were described in the virtual 

bound state model of Friedel [18], or by Wolf [19] or Anderson [20] models. These models 

analyse mainly the formation of magnetic moments on impurity atoms in metallic matrix. 

Kondo [21] discussed the minimum observed in  the temperature  dependence  of  electrical 

resistivities in dilute magnetic alloys. In the second order of perturbation theory was shown 

the presence of a logarithmic divergence in scattering of conduction electrons on the local 

moments.  There  were  also  developed  models  that  analysed  this  divergence  at  Kondo 

temperature, TK. 

An intermediate model, between Heisenberg description of a lattice formed by a single 

type  of  atoms  and  Stoner  model,  admitting  the  coexistence  of  different  types  of  ionic 

configurations,  was  elaborated  and named  “approximation  based  on ionic  configurations” 

[22]. 

The analysis of electron correlations effects in d-bands, stimulated the development of 

spin fluctuations model [23]. According to this model, thermal excitations of electron-hole 

pair  in magnetic  materials,  have a collective character  and are described in terms of spin 

density fluctuations.  In  the local  moment  limit,  the spin fluctuations  behave like a  set  of 

mutually interacting moments with a local character in real space. There are only transverse 

components  of  LSF.  In  weakly  ferromagnetic  limit  or  in  case  of  exchange  enhanced 

paramagnets,  longitudinal components of LSF or temperature variation of LSF amplitudes 

play  an  important  role.  A  local  character  in  reciprocal  space  has  been  shown.  The 

intermediate behaviour corresponds to situation when both transverse and longitudinal spin 

fluctuations  are  present.  The  mater  of  quenching of  spin fluctuations  by external  [24]  or 

internal [25] fields was analysed. 

The  DMFT  combined  with  standard  LDA  band  calculations  [26]  showed  that  in 

weakly correlated  system,  the  local  spin susceptibility  is  nearly  temperature  independent, 

while in a strongly correlated system, Curie-Weiss behaviour can be shown. For an itinerant 

electron  system,  the  time  dependence  of  the  correlation  function  results  in  temperature 

dependence of 2
locS . Fluctuating moments and atomic-like configurations are large at short 

times. The moment is reduced at longer time scales, corresponding to a more band-like and 

less correlated electronic structure near the Fermi level.

References

1. C.Hering, J.Appl. Phys. 31, 3S (1960)

2. W.Heisenberg, Z. Physik 44, 455 (1927)

5



3. M.A.Ruderman and C.Kittel, Phys. Rev. 96, 99 (1954): T.Kasuya, Progr. Theor. Phys. 16, 

45 (1956); K.Yoshida, Phys. Rev. 106, 893 (1957)

4. J.H. van Vleck, J. Phys. Radium 12, 262 (1951)

5. P.W.Anderson, Phys. Rev. 115, 2 (1959)

6. C.Zener, Phys. Rev. 82, 403 (1951)

7. E. Ising, Z. Physik 31, 253 (1925)

8. L. Onsager (1998); C.N.Yang, Phys. Rev. 85, 808 (1952)

9. E. Burzo, Fizica Fenomenelor Magnetice, Ed. Academia Romana, 1981

10. T. Berlin and, M. Kac, Phys. Rev. 86, 821 (1952)

11. P.Weiss, J.Phys. 6, 667 (1907)

12. F.Bloch, Z. Physik 61, 206 (1930)

13. E.C.Stoner, Proc. Roy. Soc. A165, 372 (1938); A169, 339 (1931)

14. J. Hubbard, Proc. Roy Soc. A 276, 238 (1963); A277, 237(1961): A281, 401(1964)

15. J.Friedel, J.Phys. Radium 23, 501 (1962)

16. M.B.Stearns, Phys. Rev. B6, 3326 (1972); B8, 4383 (1972)

17. T.Arai and M. Parrinello, Phys. Rev. Lett. 27, 1226 (1971)

18. J. Friedel, Can. J. Phys. 34, 1190 (1956); Nuovo Cimento, Suppl. 7, 287 (1958)

19. P.A.Wolf, Phys. Rev. 124, 1080 (1961)

20. P.W.Anderson, Phys. Rev. 124, 41 (1961)

21. J. Kondo, Progr. Theor. Phys. 32, 37 (1964)

22. J.H. Van Vleck, Rev. Mod. Phys. 25, 220 (1964); L.L. Hirst, Phys. Kond. Mat. 11., 225 

(1970)

23. T. Moriya, J. Magn. Magn. Mat. 100, 201 (1991) 

24. M. T. Bèal-Monod et al, Phys. Rev. Letters 20, 92 (1968); W.P. Brinkman et al, Phys. 

Rev. 169, 417 (1968); Hertel et al, Phys. Rev. B22, 534 (1980)

25. E.Burzo and R.Lemaire Sol.  State Commun. 84, 1145 (1992); Blakan Phys. Lett. 4, 208 

(1997)

26. A.I. Lichtenstein et al, Phys. Rev. Lett. 87, 067205 (2001)

6


