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Normal Hall effect

Geometry of measurements:
E. Hall, 1879



Simple theory
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Special case: vy= 0

Hall Coefficient RH:
RH < 0 for electrons
RH > 0 for holes
RH ≡
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→ Routinely used to measure carrier type and concentration in 
conductors→ This derivation is for simple one-band model; more complex if 
several bands involved→ RH large if n small

σ = ne2τ
m *

≡ neµ µ = eτ
m *

= σRH
µ usually measured in cm2/Vs, more easily understood as [cm/s]/[V/cm] 
or velocity per field.
µGaAs ≈ 8000 cm2/Vs, µSi ≈ 100 cm2/Vs, µp-TCO ≈ 1 cm2/Vs

In semiconductors:
Related concept is mobility µ of carriers:



Applications: Hall sensors
Hall coefficient is rather small - of the order of 50 mV/T 
Measurement of the earth’s magnetic field (about 50 µT): output 2.5 µV
→Must in almost all cases be amplified. 

Advantages:
Hall voltages are easily measurable quantities.
Hall sensors are simple, linear, very inexpensive, available in arrays, can be 
integrated within devices.
Errors involved in measurement are mostly due to temperature and
variations and the averaging effect of the Hall plate size.
A typical sensor will be a rectangular wafer of small thickness made of  p 
or n doped semiconductor (InAs and InSb most commonly used).
Operating: current usually kept constant →
output voltage proportional to the field. Very 
common in sensing rotation which may be used 
to measure position, frequency of rotation 
(rpm), differential position, etc…



A closer look at the Lorentz force
rF = q v × B( )

Cyclotron motion:
Free particle moves on a circular orbit of radius: r = mv/qB
Frequency: ω = qB/m
Orbit energy: K=q2B2r2/2m
→ In solids with very large mean free paths, one could expect a 
significant field effect
→ 2D electron gases!



Quantum Hall effectDiscovered by von Klitzing in 1980 (Nobel prize 1985). Totally unexpected and initially unexplained.Electrons confined in a thin layer at low-temperature in a high magnetic field.Hall resistance vs. B rises in a series of quantised steps at levels given by R=h/ie2 where i is an integer.Partial explanation:The magnetic field splits the states in a 2D electron gas into “Landau levels”. The number of current carrying states in each level is eB/h. The position of the Fermi level relative to the Landau levels changes with B. So the number of charge carriers is equal to the number of filled Landau levels, i, times eB/h⇒ R=h/ie2.Interesting features:•The resistance can be precisely measured ( 1 in 108 ).•It is simply related to fundamental constants. R=h/ie2, α= e2/2ε0hc so R=1/2iε0cα. Both ε0 and c are constants without errors: ε0= 1/µ0c2, µ0=4π . 10-7 (NA-2) and  c=299,792,458  (ms-1).•The measurement is done at very low energy so higher order corrections are negligible. 



Anomalous Hall effect in ferromagnets
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Hall effect in Fe whiskers:
P.N. Dheer, Phys Rev (1967)



Different DOS for up 
and down spins :

s electrons : low density of states + high mobilityd electrons : large density of states + low mobility

Transport is dominated by s electrons scattered into d bandsd bands split by the exchange energy
→ diffusion is spin dependent
→ Two current model :Two conduction channels in parallelwith ρ↑ ≠ ρ↓

Resistivity : 

or (with spin-flip) :
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Spin dependent transport in ferromagnetic metals
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Relativistic Spin-Orbit Coupling
• Relativistic effect: a particle in 
an electric field experiences an 
internal effective magnetic field 
in its moving frame 

• Spin-Orbit coupling is the 
coupling of spin with the 
internal effective magnetic field 
(Zeeman energy)

+−Er



Origin of the asymmetry of the interaction between conduction electrons 
and a localized magnetic moment: 
Spin-orbit coupling term associated with any scattering potential V(r) :

Hkk’ = (1/2m2c2r) x (dV/dr) x l.s

but the calculation shows it is too small
→ asymmetry comes from an interaction with localized electrons 
possessing an orbital momentum (Kondo 1962):

H = -Js.j + λll.js, l are the spin and orbital angular momenta of the conduction electrons, j is the total angular momentum of the localised electrons. This gives the asymmetry in scattering.

Theories for AHE: Skew scattering

Exchange interaction unable to explain an asymmetry in scattering.
Exists only if Hkk’ is asymmetrical → terms containing the orbital angular 
momentum l

•e- k
k’



Ordinary magnetoresistance and 
Hall effect in Boltzman theory:

Magnetoresistance and Hall effect 
in Boltzman theory including 
asymmetric Hamiltonian (B. Giovannini J. Low-Temp. Phys. 1972)

With:

And:

→→→→ the skew scattering term is equivalent to an effective magnetic
field acting on the orbit of the conduction electrons.



Side jump mechanism
Berger (1972): Same 
Hamiltonian as before for 
the scattering of a free 
electron plane wave by a 
square potential:

Solving the equation of motion 
using this Hamiltonian results in a 
non-zero average angle (k,k’) = 
skew scattering, but also to a 
different origin for the wave 
velocity = side jump



Berger (72): ∆y = 1/6k0λc
2 

λc = ħ/mc = Compton wavelength
k0 = incident electron wavevector

For free electrons with k0 = 1010 m-1, ∆y ≈ 3.10-16 m   ( = small )

But, for band electrons, spin-orbit potential is added:

→ Enhancement of the side jump by a factor proportional to the spin-
orbit coupling constant

→ ∆y ≈ 10-11 m

Nozieres-Lewiner (J. Phys. 34, 901 (1973)) in semiconductors :
Anomalous Hall current JH dissipationless, indept of τ

〉〈×= SEJ SO2H 2 λne



Skew-scattering and side-jump Contributions
Modelled for 3D n-type GaAs, with ionized donors represented by 
attractive screened Coulomb potentials.
First order in spin-orbit coupling λ; assume Boltzmann equation

Side jump contribution to σH is of order eλkF2, independent of τSkew scattering contribution is of order egEFτ , where g=λkF2(Vmax/EF)Dependence with resistivity : 
Skew scattering: Hall angle constant ⇒ ρss ∝ ρxxSide jump: Hall angle varies like 1/τ ∝ ρ⇒ ρsd ∝ ρxx2



Karplus Luttinger theory of AHE
Contribution due to the change in wave packet group velocity upon 
application of an electric field in a ferromagnet (Karplus, Luttinger, 1958).
Not related to scattering! Topological in nature (Berry phase).

[ ]∑ += k kkkvJ gfe 02Boltzmann equation:Anomalous velocity : → Equilibrium Fermi-Dirac distribution contributes! 0kfAnomalous Hall current :
Independent of lifetime τ ⇒ ρxy ~ ρ2
+ requires sum over all k in Fermi sea.
Berry curvature        vanishes if time-reversal symmetry valid
⇒ Importance of spin-orbit couplingkΩ
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Correction: k-space Berry curvature

→→→→



Evaluation of the Berry phase contributionElectrons hopping between atoms in a magnetic field B→ complex factor in the quantum mechanical amplitude of the wave function with phase given by the vector potential A corresponding to B (=∇xA).In magnets: analogous complex factor when electrons hop along non-coplanar spin configurations. The effective magnetic field is represented by the spin chirality, i.e. the solid angle subtended by the spins.unk = periodic part of the Bloch wave in the nth bandM//z :Calculation:Yugui Yao et al., PRL92, 037204 (2004): ab initio electronic structure calculation to evaluate Ω :Large contribution only when the Fermi surface lies in a spin-orbit induced gap.Figure: Band structure near Fermi energy (upper panel) and Berry curvature ΩΩΩΩz(k) (lower panel) along symmetry lines. Total result consistent with measurements in Fe.



My vision of topology: hand waving considerations

Single scatterer

lattice

Two lattices 
with different 
chirality



A unified theory?Goal: have all the sources of AHE in the same Hamiltonian to check the relevance of the different contributions (S. Onoda, N. Sugimoto and N. Nagaosa, PRL 97, 126602 (2006)).Notice: Topological effect important near p0 vectors located at an anticrossing of the band structure = points with a small gap 2∆0, which is identified with the spin-orbit interaction energy εSO.At p0, σxy is resonantly enhanced and approaches e2/ha ≈ 103 Ω-1 cm-1 in three dimensions (a = lattice constant ≈ 4 Å).Hamiltonian written for pz vectors near the anticrossing p0 :
σ= Pauli matricesez =unit vector along z

Figure: 2-band dispersions 
corresponding to the Hamiltonian

Level splitting 
by S.O.

linear dispersion
with velocity λ Quadratic dispersion 

with no anisotropyImpurity potential 
scattering



Result for the AHE:Clean limit: skew scattering diverges:S=σSOνimp/W2, W=bandwidthGoing away from the clean limit: Intrinsic contribution dominates. Crossover occurs at ħ/τ = εSO. For a small ratio of εSO/EF ≈103–102 the intrinsic AHE dominates in the usual clean metal.
Fig.: σtotxy and σintxy as a function of ħ/τfor EF close to resonance.

Remarks: 1) effects based on scattering + SO are based on intraband matrix elements of conductivity tensor. Interband terms contain the intrinsic contribution as a part of the Berry-curvature term. 2) Side jump contribution has the same dependence as the intrinsic (σxy=cte) but its magnitude is small: e2/ħ.εSO/EF vs around e2/ħ. 3) In the hopping regime σxy∝σxx1.6 . Figure: Scaling plot of σxy versus σxx



Supports KL theory: Ferromagnetic Spinel CuCr2Se4

Cu

Goodenough-Kanamori rules

180o bonds:  AF 
(superexch dominant)

90o bonds: ferromag.
(direct exch domin.)

OCu

Se

Cr

Little effect of Br doping on magnetization: 380K>Tc>250K for x=0 to x=1
At 5 K, Msat ~ 2.95 µB /Cr for x = 1.0

Large effect on resistivity: At 5 K, ρ increases over 3 orders as x goes from 0 to 1.0.
nH decreases linearly with x from 6.1020 cm-3 to 2.1020 cm-3 for x =1.0.



Anomalous Hall Effect scales with ρ2 over 5 orders of magnitude:

Wei Li Lee et al. Science (2004)

If  σ’xy ~ n, then ρ’xy /n ~ 1/(nτ)2 ~ ρ2

Fit to ρ’xy/n = Aρ2

Observed A implies <Ω>1/2 ~  0.3 Angstrom

Ω= h2enxy 'σKL:

70-fold decrease in τ, from x=0.1 to x=0.85.
σxy/n is independent of τ

Doping has no effect on anomalous Hall 
current JH per hole

Strongest evidence to date for the 
anomalous-velocity theory (KL)



AHE in diluted magnetic semiconductors

-DMS good because 
of large L in bands
- Scaling with ρ2
works!



Current generated spin accumulation at a Ferro (Co) / Normal metal (Cu) interface:
Typically, at 4.2 K :lsf (Co) ≈ 60 nmlsf (Cu) ≈ 500 nm

Hall effect in GMR systems



Systems composed of ferro/normal mixtures
Initial reports of a ‘giant AHE’ with temperature dependence ρAHE∝ρn with n>2.
But:

=

Normalised values of the AHE coefficients as a function of normalised resistivity.
a) Total AHE with total resistivity
b) Temperature-dependent components of the AHE coefficients RAHE,th with the 

temperature-dependent term of ρth.
From A. Gerber et al., PRB69, 224403 (2004).



Magnetic clusters in paramagnetic host Co clusters in Pt→ AHE is proportional to the 
density of clusters

Data analysis undertaken using the skew scattering theory with the following 
arguments:
Total resistivity comes from scattering from ‘skew scatterers’ + events that do not 
break the scattering symmetry (no transverse effect). 

ρ =ρ0+ρs
The transverse current density J⊥ generated by electrons deflected by skew 
scattering is proportional to the volume density of skew centers ns: J⊥ =αnsJ→ ρAHE = E⊥/J = αns(ρ0 + ρs)
If ns∝ρs then ρAHE = αρsρ0 + βρs

2

When T varies, only ρ0 varies and ρAHE is proportional to ρ0. Consistent with data.



Crossover behaviour: support to the unified theory

Figure: Absolute value of anomalous Hall conductivity σxy as a function of longitudinal conductivity σxx in pure metals (Fe, Ni, Co, and Gd), oxides (SrRuO3 and La1-xSrxCoO3), and chalcogenide spinels (Cu1-xZnxCr2Se4) at low temperatures. The three lines are 
σxy ∝ σxx1.6 , σxy = const, and σxy ∝ σxxfor the dirty, intermediate, and clean regimes, respectively. The inset shows theoretical results obtained from the same analysis (S. Onoda, N. Sugimoto and N. Nagaosa, PRL 97, 126602 (2006)).

T. Miyasato et al., PRL 99, 086602 (2007)



Spin Hall effectNothing very new compared to theories for the AHE, but P=0.



Figure A and B: Two-dimensional images of spin density ns and reflectivity R, respectively, for the unstrained GaAssample measured at T=30 K and E=10 mV µm–1.The red curve is taken at position x=–35 µm; the blue curve is taken at x=+35 µm, corresponding to the two edges of the channel. These curves can be understood as the projection of the spin polarization along the z axis, which diminishes with an applied transverse magnetic field because of spin precession;

Observation of the Spin Hall Effect in Semiconductors
Y. K. Kato, et al., Science 306, 1910 (2004);



ConclusionsAnomalous Hall Effect : 50 years of controversyIn the process of being solved…?Mechanisms :Role of impurity scattering with S.O. → mainly skew scatteringTopological property of Fermi surface (with S.O.) → ‘Intrinsic’ effectSide jump negligible.Traditionally: regime of skew scattering + regime of side jump.Now: skew scattering + topological Berry phaseSpin Hall effect : Generation of non-dissipative spin currents…?Can it be used in spintronics?



Any vector object which is parallel transported along a closed path may acquire an 
angle with respect to its initial orientation prior to transport. An intuitive example of 
such a geometric phase is the parallel transport of a vector along a loop on a sphere.

Figure: the parallel transport of two vectors on a 
sphere. After a closed loop of transportation from 
point 1 to point 7, the orientation of the vectors 
changed due to the geometrical phase they 
acquired through the transportation.

Since in quantum mechanics, states can be represented by vectors in Hilbert space, 
there is no reason that they should make exceptions to the general rule of acquiring
phase angles after parallel transported along loops. In 1984, M. Berry [7] published a
precise formulation of geometrical phase for quantum problems. Berry considered a
quantum system whose Hamiltonian is slowly and adiabatically altered by varying a
control parameter, as the control parameter loops back to its initial value, the system will
return to its initial state except for an additional phase factor. He argued that the 
additional phase factor contains two parts; one is the trivial dynamical phase factor and
the other is the geometrical phase factor. The crucial point about this geometrical phase
factor is that it is non-integrable, i.e. it can not be expressed as a function of the control
parameter and it is not single-valued under continuation around a circuit.

Berry phase


