Information from magnetisation curves

Viorel Pop Faculty of Physics, Babes-Bolyai University, 4000480 Cluj-Napoca, Romania

Fundamental properties of matter and Applications

Physics is DIFFICULT and HARD to understand

keep away of physic

Magnetic moments of the electrons

Magnetic moment of the atoms

Magnetism in mater

Magnetic study of the mater

Fundamental properties and Applications

Magnetic moment of the atoms

magnetisation magnetic susceptibility magnetic permeability

Μ χ μ

$$\vec{\mathbf{B}} = \mu_0 \left(\vec{\mathbf{H}} + \vec{\mathbf{M}} \right)$$

 $B = \mu_0(H + \chi H) = \mu_0(1 + \chi)H = \mu H$

 $\mu_0 = 4\pi \cdot 10^{-7} \text{ H/m}$

θ

Curie temperature evaluation

Curie temperature evaluation

Curie temperature evaluation

$$T \rightarrow T_c; T < Tc$$
 $\left[\frac{M(T)}{M(0)}\right]^2 = \frac{10}{3} \cdot \frac{(J+1)^2}{J^2 + (J+1)^2} \left(1 - \frac{T}{T_c}\right)$

O. Isnard, V. Pop, K.H.J. Buschow, J. Magn. Magn. Mat. 256 (2003) 133

In the low magnetisation region - for example $T \rightarrow Tc$; T < Tc

$$F_m(M) = a \frac{M^2}{2} + b \frac{M^4}{4} + \dots - \mu_0 MH$$

$$\frac{dF_m}{dM} = 0 \square aM + bM^3 = \mu_0 H \quad \text{or} \quad M^2 = \frac{M}{H} \frac{\mu_0}{b} - \frac{a}{b}$$

molecular field approximations:

$$\frac{\mu_0 N_{ii} (T - T_c)}{T_c} M + \frac{\mu_0 3 (2J^2 + 2J + 1)T}{10M_0^2 (J + 1)^2 C} M^3 = \mu_0 H$$

$$H_m = N_{ii} M$$

$$N_{ii} = T_c/C$$

$$a = \frac{\mu_0 N_{ii} (T - T_c)}{T_c}$$

$$T < Tc = a < 0$$

$$T = Tc = a = 0$$

$$T > Tc. = a > 0$$

$$b = \frac{\mu_0 3(2J^2 + 2J + 1)T}{10M_0^2 (J+1)^2 C}$$

r = 1 local moment limit $r \rightarrow \infty$ total delocalisation limit

	Gd ¹	Fe ¹	Co ¹	ThFe ₁₁ C _{1.5} ²	Fe ₃ C ³	HoCo₄Si⁴	YCo ₃ B ₂ ⁵
r	1.00	1.01	1.32	1.5	1.69	2.03	$\rightarrow \infty$

- ¹ P.R. Rhodes, E.P. Wolfarth, Proc. R. Soc. 273 (1963) 347.
- ² O. Isnard, V. Pop, K.H.J. Buschow, J. Magn. Magn. Mat. 256 (2003) 133
- ³ D. Bonnenberg, K.A. Hempel, H.P.J. Wijn, Landolt-B.orsntein new series, Vol. III, 19a, Springer, Berlin, 1986, p. 142.
- ⁴ N. Coroian, PhD thesis
- ⁵ R. Ballou, E. Burzo, and V. Pop, J. Magn. Magn. Mat. 140-144 (1995) 945.

E. Du Trémolet de Lacheisserie (editor), Magnetisme, Presses Universitaires de Grenoble, 1999

High anisotropy energy <u>spin – flip</u> transition

also in ferrimagnetic materials

$$B = \mu_0 (H + M) = \mu_0 (H + \chi H)$$
$$= \mu_0 \cdot H (1 + \chi) = \mu \cdot H$$
$$\mu = \mu_0 \cdot (1 + \chi) = \mu_0 \cdot \mu_r$$
$$\mu_r = (1 + \chi)$$

Curie temperature, T_c

Hard magnetic materials

FIG. 2. Hysteresis loops of NiFe/CoO bilayer for (a) continuous film, an patterned nanodots with dimensions of (b) 900×900 , (c) 700×700 , (500×500 , and (e) 300×300 nm².

Spring magnets

The <u>reversibility curves</u> and the <u>dM/dH variation</u> vs H are very fine instruments in qualitative evaluation of the interphase hard/soft exchange coupling.

$$H_d = N_{\parallel}M_s \leftarrow \vec{H}_d = -N_d\vec{M} \rightarrow H_d = N_{\perp}M_s$$

The influence of the demagnetising field on the magnetisation curves

$$\vec{H}_d = N_d \vec{M}$$
 $\overrightarrow{H} = \vec{H}_i = \vec{H}_a + \vec{H}_d$ H_a = applied field

magnetic measurements on *plate shape samples*

NO MAGNETOCRYSTALLINE ANISOTROPY

Magnetic measurements give magnetisation (A/m)

The <u>reversibility curves</u> and the <u>dM/dH variation</u> vs H are very fine instruments in qualitative evaluation of the interphase hard/soft exchange coupling.

