

O IFW	Intrinsic magnetic properties			
	<i>Т</i> _с (К)	<i>K</i> ₁ (MJm ⁻³)	μ ₀ M _S (T)	占
Nd ₂ Fe ₁₄ B	585	4.9	1.60	highest (BH) _{max}
SmCo ₅	993	17	1.05	highest operating temp.
L1 ₀ FePt	750	6.6	1.43	high corrosion resistance, mechanical strength
AlNiCo	1133	0.04	1.20	high temperature stability, high corrosion resistance
BaFe ₁₂ O ₁₉	720	0.3	0.47	low cost (!), good chem. stability, electrical resistance
α-Fe	1043	0.05	2.16	
			L	1

D-HDDR

IFW

 \checkmark Degree of texture depends strongly on the hydrogen pressure during the different stages

 \checkmark Well-correlated Fe₂B grains could act as the anisotropy-mediating phase

✓ High stability of the information carrier under low hydrogen pressures makes the *d*-HDDR process applicable for the industrial production of anisotropic powders

HDDR in magnetic field

✓ Recombination reaction is affected by external magnetic fields

 \checkmark Field processing can be used as an additional tool to tailor microstructure of hard magnetic materials

Sm-Co alloys Phase diagram High temperature magnets Coercivity Interaction domains

