

"BIOMEDICAL APPLICATIONS OF MAGNETIC NANOPARTICLES:

I: DRUG DELIVERY"

M.R. IBARRA^{1,2}, R. FERNÁNDEZ-PACHECO¹, C. MARQUINA² AND J.G VALDIVIA¹

II: ELECTROMAGNETIC RADIATION"

G. F. GOYA¹, V. GRAZÚ¹, M. R. IBARRA^{1,2}

INSTITUTO DE NANOCIENCIA DE ARAGÓN, ²INSTITUTO DE CIENCIA DE MATERIALES DE ARAGÓN

ZARAGOZA (SPAIN)

http//:ina.unizar.es

OUTLINE OF THE TALK

Biomedical applications of magnetic nanoparticles I: Drug delivery

-Introduction

- -Encapsulated nanoparticles:preparation and charaterization: Morphology, Structure and Magnetism
- -Bioferrofluids for local drug delivery:
 - i) In vitro experiment: blood biocompatibility and drug carrier
 - ii) Invivo experiments: magnet implant and magnetic localization

Medical applications of magnetic nanoparticles

WHY MAGNETIC NANOPARTICLES ?

Magnetic nanoparticles response

-Drug delivery (Therapy)

-Detection and quantification of biomolecules (Cell sorting and inmunoassays)

-Contrast enhance in MRI

-Resonant adsorption of electromagnetic rdiant energy (Hiperthermy, drug release)

-Magnetic resonance

Magnetic behaviour of the matter

G. Goya et al. INA (2006)

How small?

TABLE 2.1The relation between the total number of atoms in fullshell clusters and the percentage of surface atoms

	Full-shell Clusters		Total Number of Atoms	Surface Atoms (%)
30 nm \rightarrow 5 % atoms at the surface	1 Shell		13	92
10 nm \rightarrow 20 % atoms at the surface	2 Shells		55	76
	3 Shells		147	63
3 nm \rightarrow 50 % atoms at the surface	4 Shalla		200	50
	4 5110115		309	52
	5 Shells		561	45
	7 Shells		1415	35

Crítical size for single-domain particle

-Under size reduction the coercive field increases and the the particle becomes singledomain

-When $E_{K}=KV$ as $V \rightarrow 0$ then $E_{K} \rightarrow 0$ superparamagnetic limit $\longrightarrow KV = k_{B}T$ -At this situation the particle magnetic moment will fluctuate independently of the particle

Time effects: relaxation

Due to the stocastic nature of the thermal energy the superparamagnetism is a time dependent effect

 $\tau = \tau_0 \exp(-KV/k_BT)$

 τ time for magnetization reversal (depend on the anisotropy)

Si $\tau < \tau_{measure}$ superparamagnetism

 τ_0 tipically 10⁻⁹ s

$$T_{B} = \frac{K_{eff}V}{k_{B}\ln\left(\frac{\tau_{M}}{\tau_{0}}\right)}$$

Critical volume to detect superparamagnetism: $V_{sp}=25(k_BT/K)$ $\tau_{measure} =100 \text{ s}$ $T_B=KV_{sp}/25k_B$ $V_{sp}=4.5(k_BT/K)$ $\tau_{measure} =10^{-7}\text{ s}$ $T_B=KV_{sp}/4.5k_B$

 T_B Mösbauer = 5.5 T_B magnetometry (FC y ZFC) Fo y Co at 300K. V_{ab} =16 y 7.6 nm

Classic paramagnet

Quantum paramagnet

If $K \rightarrow 0$

The supermoment follows the Langevin law

If K>>>

The supermoment follows the Brillouin J=1/2 law

Real superparamagnetic system

-No hystheresis

-The isotherm presents a universal H/T behaviour

Qualitative diagram showing the evolution of blood residence time with particle size

Different classes of blood capillaries

For agents to distribute in a tissue they must go through the vascular capillary wall; The permeability of this wall is essential

Lining cells are connected with a tight junction (BBB "Blood-Brain-Barrier)(Central nervous system)

Continuous capillaries (muscles,skin, lung...

Fenestrated capillaries (kidney, instentine and glands..)

Sinusoid capillaries (liver, spleen and bone marrow...)

Nanoparticles between 60-80 nm are removed from the blood stream in 8-10 minutes

Brain Blood Barrier (BBB)

OUTLINE OF THE TALK

Biomedical applications of magnetic nanoparticles I: Drug delivery

-Introduction

- -Encapsulated nanoparticles:preparation and charaterization: Morphology, Structure and Magnetism
- -Bioferrofluids for local drug delivery:
 - i) In vitro experiment: blood biocompatibility and drug carrier
 - ii) Invivo experiments: magnet implant and magnetic localization

FOR MEDICAL APPLICATIONS WE NEED: -Small particles -Strong magnetic response -Biocompatibles -Capability to adsorb the drug in short time -Release the drug during long time

Particles coating: Carbon and Silica nanocages

The discovery of graphitic nanostructures as fullerenes and nanotubes offers the possibility to fill nanoscale cavities with transition metals

The confinenement of this small amount of material promises:

-Novel physical properties

-Protection of the encapsulated metals from oxidation by resistant carbon cages

Plasma Furnace

(Kratschmer W. et al., (1990) Nature 347, 354)

-Helium plasma vaporizes the iron and carbon electrode

-Small drop of Fe condensed in nanoparticles coated by carbon cages

Transition metals encapsulated nanoparticles

-Graphitic multiwall nanotubes
-Catalytic particles forming large single wall nanotubes
-Small particles sourronded by polygonal layers: Onions
-Metallic inclusions in nanotubes
-Nanoparticles encapsulated in graphitic layers and glassy carbon

TEM images of Fe & Co encapsulated nanoparticles

Fe coated by graphitic layers

Sample treatment an average size

-Samples are sonicated in a dilution of surfactant (SDS and distilled water (5g/l))

-Magnetic separation is acheived in a field gradient of 3 kOe/cm

-Chemical etching with aqua regia is made to remove the uncovered metallic particles

Móssbauer spectroscopy

No indication of SP relaxation at room temperature

Estimated particle size 13-9 nm (interparticle interaction)

α –Fe

Two sextets (34T and 31T) Fe₃C A sextet (25.1 T)

γ**-Fe**

Singlet and doublet

H.R. Rechenberg et al. J. Magn. Magn. Mat 226-230 (2001) 1930

Magnetization measurements

Blocked particles

Large/correlated particles

Superparamagnetic particles Small particles

Blocking temperature is determinated from FC and ZFC

Silica encapsulated Fe nanoparticles

Fe encapsulated in Silica X-Ray Photoelectron Spectroscopy

Iron nanoparticles encapsulated in Silica (M. Arruebo et al. Adv. Funct. Mat. 2007)

High Resolution Transmision Electron Microscopy of carbon encapsulated iron nanoparticles

OUTLINE OF THE TALK

Biomedical applications of magnetic nanoparticles I: Drug delivery

- -Introduction
- -Encapsulated nanoparticles:preparation and charaterization: Morphology, Structure and Magnetism
- -Bioferrofluids for local drug delivery:
 - i) In vitro experiment: blood biocompatibility and drug carrier
 - ii) Invivo experiments: magnet implant and magnetic localization

BIOFERROFLUIDS AS THERAPEUTIC CARRIERS

- -They should be magnetic to be guided by applied magnetic fields
- -The magnetic materials are not biocompatibles
- -The nanoparticles should be encapsulated
- -The sourrounded material should be able to adsorb and desorb the drug

Local drug delivery by using magnetic carriers

New development at the INA Lapararoscopic implant of a permanent magnet

> Intravenous administration of magnetic carriers

BIOFERROFLUIDS

Drug adsorption and desorption of drugs

Doxorubicin (11x 13 Å)

Absorbance spectra of Doxorubicin. Kinetics of adsorption

The adsorbent particles were sedimented with a 3 KOe permanent magnet, and the optical density of the supernatant measured with a UV spectrophotometer (method proposed by Kuznetsov, A. et al, (1999) J. Mag. Mag. Mat. 194, 22).

Absorbance spectra of Doxorubicin after desorption

The adsorbent particles were sedimented with a 3 KOe permanent magnet, and the optical density of the supernatant measured with a UV spectrophotometer

The particles can be seen in blood smeared as black point in May-Gruendwald-Giemsa and Perls stain. The green-blue die characteristic of iron in Perls stain is absent, which is an indication of the good encapsulation of the iron by graphitic layers. All the particles are extracellular, both in rabbits (circulating particles "in-vivo") and human (mixture of the ferrofluid and blood "invitro"). We did not find magnetic particles neither in circulating monocytes nor granulocytes. This means that iron is well coated and that the particles have not been withdrawn from circulation for phagocytes.

Nanoparticles in the blood stream

Test of biocompatibility

HEMATOLOGIC TESTS

"In vivo" in rabbits

- Blood samples were taken before, and 10 minutes after the venous injection of the particles.
- 1 ml of Nanoparticles at a concentration of 12.5 mg/ml of Gelafundine injected in rabbits do not modify blood and plasma viscosity.
- Erythrocyte aggregation remains within normal limits, with very small variations without clinical significance.

"In vitro" in human blood

• We have tested human blood at different concentration of particles (5 ml of blood and 0, 0.06, 0.12, 0.24 and 0.5 ml of ferrofluid). We obtained normal values in all tests, differing less than 10% in relation to our own series of normal controls.

RESULTS IN HUMAN BLOOD

	VS230	VS 23	VS5,7	AE5M	AE5M1	AE10M	AE10M1
BASAL	4,44	6,7	7,2	3,4	10	8,3	22,5
C.0,06	4,36	5	7,6	3,4	8,9	7,6	20,6
C.0,12	4,45	7	8	3	8,4	7,6	18
C.0,24	4,33	5,4	6,9	2,9	7	7,1	18,6
C.0,5	4,1	6,2	6,4	2,9	6,9	8,8	20,1

25 20 15 10 5 VS5,7 **VS230** AE5M1 AE10M1

AE = Erythrocyte aggregation (M: stasis, M1 minutes under low shear rate)

VS = Blood viscosity Shear rate (s⁻¹)

C= Particles concentration (mg/ml)

BASAL

C.0,06

C.0,12

C.0,24

C.0,5

OUTLINE OF THE TALK

Biomedical applications of magnetic nanoparticles I: Drug delivery

- -Introduction
- -Encapsulated nanoparticles:preparation and charaterization: Morphology, Structure and Magnetism
- -Bioferrofluids for local drug delivery:
 - i) In vitro experiment: blood biocompatibility and drug carrier
 - ii) Invivo experiments: magnet implant and magnetic localization

Surgical model: Percutaneus insertion of a permanent magnet

The rabbits were submitted to general anaesthesia with endotracheal intubation.

A laparoscopic optic was introduced by using a 5 mm trocar.

Optical Microscope Image of the permanent magnet coated with gold.

Under endoscopic control, the permanent magnet was implanted in the lower pole of the righ kidney

Bioferrofluid

125 mg of our nanoparticles were suspended in 100 ml of gelafundine

1 ml of the fluid were injected intravenously in the marginal ear vein of the rabbit.

In coll. Veterinarian Clinical Hospital

Magnet implant in the left kidney

Right kydney witout magnetic implant

Kidney with magnetic implant:

The advantage of this method is the huge field gradient obtained (30 T/m)

Liver Capture in Kuffer cells

Nanoparticles in spleen

Macrophagy capture in organs

Reduced concentration of nanoparticles in lung

The ultrasound scan displays the image of a gold coated magnet inserted inside a kidney. After the injection magnetic nanoparticles remain attracted to the magnet, the amount of metallic then increases and the echo of the ultrasound is broadened

Ecoguided puncture for drug delivery to avoid macrophages capture

