Magnetization reversal

II. Non-single-domain effects: Interactions, nanostructures and domain walls

Olivier Fruchart

Institut Néel (CNRS-UJF-INPG) Grenoble - France

http://neel.cnrs.fr

Institut Néel, Grenoble, France. http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

II. Non-single-domain effects

1. Dipolar energy

- **2.** Coercivity in patterned elements
- **3.** Manipulation of domain walls
- 4. Interfacial effects

l.1. Dipolar energy

- **1.** Treatment of dipolar energy
- **2.** Some consequences of dipolar energy on hysteresis loops
- 3. Dipolar energy and collective effcts in assemblies

NON-SINGLE DOMAIN EFFECTS — Origins of magnetic energy

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.4 titut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Notations

Magnetization

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.5 tut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Treatment of dipolar energy (1/3)

Density of dipolar energy $E_{\rm d}(\mathbf{r}) = -\frac{1}{2} \mu_0 \mathbf{M}(\mathbf{r}) \cdot \mathbf{H}_{\rm d}(\mathbf{r})$

By definition $div(H_d) = -div(M)$. As $curl(H_d) = 0$ we have (analogy with electrostatics):

$$\mathbf{H}_{d}(\mathbf{r}) = -M_{s} \iiint_{space} \frac{\operatorname{div}[\mathbf{m}(\mathbf{r}')].(\mathbf{r}'-\mathbf{r})}{4\pi \|\mathbf{r}-\mathbf{r}'\|^{3}} d^{3}r'$$

$$\rho(\mathbf{r}) = -M_{s}\operatorname{div}[\mathbf{m}(\mathbf{r})] \text{ is called the volume density of magnetic charges}$$

To lift the divergence that may arise at sample boundaries a volume integration around the boundaries yields:

$$\mathbf{H}_{d}(\mathbf{r}) = M_{s} \left(-\iiint_{space} \frac{\text{div}[\mathbf{m}(\mathbf{r}')].(\mathbf{r}'-\mathbf{r})}{4\pi \|\mathbf{r}-\mathbf{r}'\|^{3}} d^{3}r' + \iiint_{sample} \frac{[\mathbf{m}(\mathbf{r}').\mathbf{n}(\mathbf{r}')].(\mathbf{r}'-\mathbf{r})}{4\pi \|\mathbf{r}-\mathbf{r}'\|^{3}} d^{2}r' \right)$$

 $\sigma(\mathbf{r}) = M_{s}\mathbf{m}(\mathbf{r}).\mathbf{n}(\mathbf{r})$ is called the surface density of magnetic charges, where n(r) is the outgoing unit vector at boundaries

Do not forget boundaries between samples with different M_s Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.6 Institut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

Some ways to handle dipolar energy

Integrated dipolar energy: $\mathcal{E} = -\frac{1}{2} \mu_0 \iiint_{\text{sample}} \mathbf{M} \cdot \mathbf{H}_{\text{d}} \cdot \mathbf{d} V$ <u>Notice</u>: six-fold integral over space: non-linear, long-range, time-consuming.

Bottle-neck of micromagnetic calculations

Usefull theorem for finite samples:

$$\mathcal{E} = -\frac{1}{2}\mu_0 \iiint_{\text{sample}} \mathbf{M} \cdot \mathbf{H}_{\text{d}} \cdot \mathbf{d} \, \mathbf{V} = \frac{1}{2}\mu_0 \iiint_{\text{space}} \mathbf{H}_{\text{d}}^2 \cdot \mathbf{d} \, \mathbf{V}$$

 $rightarrow \varepsilon$ is always positive

Significance of (BHmax) for permanent magnets

$$-\frac{1}{2}\mu_{0}\iiint_{\text{sample}}(\mathbf{M}+\mathbf{H}_{d}).\mathbf{H}_{d}.dV = -\frac{1}{2}\mu_{0}\iiint_{\text{sample}}\mathbf{B}.\mathbf{H}_{d}.dV$$
$$= \frac{1}{2}\mu_{0}\iiint_{\text{space}\text{sample}}\mathbf{H}_{d}^{2}.dV \longleftarrow$$

Energy available outside the sample, ie usefull for devices

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.7 , Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

Examples of magnetic charges

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.8 titut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Demagnetizing coefficients (1/3)

Assume uniform magnetization $\mathbf{M}(r) \equiv \mathbf{M} = M_{s} \left(m_{x} \mathbf{x} + m_{y} \mathbf{y} + m_{z} \mathbf{z} \right) = M_{s} m_{i} \mathbf{u}_{i}$

$$\mathbf{H}_{d}(\mathbf{r}) = M_{s} \iint_{sample} \frac{[\mathbf{m}.\mathbf{n}(\mathbf{r}')].(\mathbf{r}'-\mathbf{r})}{4\pi \|\mathbf{r}-\mathbf{r}'\|^{3}} d^{2}r'$$
$$= M_{s}m_{i} \iint_{sample} \frac{n_{i}(\mathbf{r}').(\mathbf{r}'-\mathbf{r})}{4\pi \|\mathbf{r}-\mathbf{r}'\|^{3}} d^{2}r'$$

$$\begin{split} \mathcal{E}_{d} &= -\frac{1}{2} \mu_{0} \iiint_{\text{sample}} \mathbf{H}_{d}(\mathbf{r}) \cdot \mathbf{M} \cdot d^{3}\mathbf{r} \\ &= -\frac{1}{2} \mu_{0} M_{s}^{2} m_{i} \iiint_{\text{sample}} d^{3}\mathbf{r} \iint_{\text{sample}} \frac{n_{i}(\mathbf{r}') \cdot [\mathbf{m} \cdot (\mathbf{r}' - \mathbf{r})]}{4\pi \|\mathbf{r} - \mathbf{r}'\|^{3}} d^{2}\mathbf{r}' \\ &= -\mathcal{K}_{d} m_{i} m_{j} \iiint_{\text{sample}} d^{3}\mathbf{r} \iint_{\text{sample}} \frac{n_{i}(\mathbf{r}') \cdot (r_{j}' - r_{j})}{4\pi \|\mathbf{r} - \mathbf{r}'\|^{3}} d^{2}\mathbf{r}' \end{split}$$

$$\mathcal{E}_{d} = K_{d} V N_{ij} m_{i} m_{j} = K_{d} V \mathbf{m} \cdot \mathbf{N} \cdot \mathbf{m}$$

See more detailed approach: M. Beleggia and M. De Graef, J. Magn. Magn. Mater. 263, L1-9 (2003)

 Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.9

 Institut Néel, Grenoble, France

 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

$$\mathcal{E}_{d} = K_{d}N_{ij}m_{i}m_{j} = K_{d}^{t}\mathbf{m}.\mathbf{N}.\mathbf{m}$$

< H_d(**r**) >= $-M_s \overline{\mathbf{N}}.\mathbf{m}$

N is a positive second-order tensor

$$N = \begin{pmatrix} N_{x} & 0 & 0 \\ 0 & N_{y} & 0 \\ 0 & 0 & N_{z} \end{pmatrix}$$

$$\mathcal{E}_{d} = K_{d}(N_{x}m_{x}^{2} + N_{y}m_{y}^{2} + N_{z}m_{z}^{2})$$

$$< H_{d,i}(\mathbf{r}) >= -M_{s}N_{i} \quad \longleftarrow \quad \text{Valid along main axes only!}$$

$$N_{x} + N_{y} + N_{z} = 1$$

What with ellipsoids???

Self-consistency: the magnetization must be at equilibrium and therefore fulfill m//H_{eff}

Assuming $\mathbf{H}_{applied}$ and \mathbf{H}_{a} are uniform, this requires $\mathbf{H}_{d}(\mathbf{r})$ is uniform. This is satisfied only in volumes limited by polynomial surfaces of order 2 or less: slabs, cylinders, ellisoids (+paraboloïds and hyperboloïds).

J. C. Maxwell, Clarendon 2, 66-73 (1872)

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.10 Institut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Demagnetizing coefficients (3/3)

$N_{x} = \frac{1}{2} abc \int_{0}^{\infty} \left[(a^{2} + \eta) \sqrt{(a^{2} + \eta)(b^{2} + \eta)(c^{2} + \eta)} \right]^{-1} d\eta$

General ellipsoid: main axes (a,c,c)

$$N_{x} = \frac{\alpha^{2}}{1 - \alpha^{2}} \left[\frac{1}{\sqrt{1 - \alpha^{2}}} \operatorname{Asinh}\left(\frac{\sqrt{1 - \alpha^{2}}}{\alpha}\right) - 1 \right]$$
$$N_{x} = \frac{\alpha^{2}}{\alpha^{2} - 1} \left[1 - \frac{1}{\sqrt{\alpha^{2} - 1}} \operatorname{Asin}\left(\frac{\sqrt{\alpha^{2} - 1}}{\alpha}\right) \right]$$

For prolate revolution ellipsoid: (a,c,c) with α =c/a<1

$$N_y = N_z = \frac{1}{2}(1 - N_x)$$

For oblate revolution ellipsoid: (a,c,c) with α =c/a>1

Cylinders

Ellipsoids

$$N_x = 0;$$
 $N_y = c/(b+c);$ $N_z = b/(b+c)$ For a cylinder along x

J. A. Osborn, Phys. Rev. 67, 351 (1945).

For prisms, see: A. Aharoni, J. Appl. Phys. 83, 3432 (1998)

More general forms, FFT approach: M. Beleggia et al., J. Magn. Magn. Mater. 263, L1-9 (2003)

 \mathcal{I}

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.11 Institut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.12

itut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

Case of a bulk soft magnetic material

Hypotheses:

1. Use an ellipsoid, cylinder or slab along a main direction so that the demagnetizing field may be homogeneous.

2. Domains can be created to yield a uniform and effective magnetization Meff

Density of energy:
$$E_{tot} = E_d + E_Z$$

 $= \frac{1}{2} \mu_0 N M_{eff}^2 - \mu_0 M_{eff} H_{ext}$
Minimization: $\frac{\partial E_{tot}}{\partial M_{eff}} = \mu_0 N M_{eff} - \mu_0 H_{ext}$ \longrightarrow $M_{eff} = \frac{1}{N} \mu_0 H_{ext}$
See: V. Pop
Conclusion for soft magnetic materials
 \swarrow Susceptibility is constant and equal to 1/N

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.13

1, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Compensation of dipolar energy in loops (1/4)

 Internal field during loop: H_d=-N_j.M₁ (must be corrected to access intrinsic properties)

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.15

renoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Compensation of dipolar energy in loops (3/4)

Specific aspects in hard magnetic materials

- 1. The concept of effective magnetization fails, because grains are either up or down.
- 2. Individual grains have a shape, implying a demagnetizing field that must be taken into account
- 3. In heteromaterials (ex: hard-soft; magnetic/non-magnetic etc.) the magnetization of both phases has to be taken into account. Depends also on grain size...

NON-SINGLE DOMAIN EFFECTS — Compensation of dipolar energy in loops (4/4)

Specific aspects to systems with non-ellipsoidal shapes

In a non-ellipsoidal sample (or cylinder, slab) the loop is overcompensated at low magnetization and undercompensated at high field, even for soft magnetic materials. ♦ This effect adds up to the previous effect of grain shape

P. O. Jubert, O. Fruchart et al., Europhys. Lett. 63, 102-108 (2003)

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.17 stitut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Collective effects: range of interaction

➡ Dipolar fields are weak and short-ranged in 2D or even lower-dimensionality systems
 ➡ Dipolar fields can be highly non-homogeneous in anisotropic systems like 2D
 ➡ Consequences on dot's non-homogenous state,
 ➡ magnetization reversal, collective effects etc.

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.18

itut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Collective effects: bilayers

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.19

éel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Collective effects: models of dipolar energy

Models for arrays of single-domain planar rectangular dots

E. Y. Tsymbal, Theory of magnetostatic coupling in thin-film rectangular magnetic elements, Appl. Phys. Lett. 77, 2740 (2000)

R. Álvarez-SÁnchez at el., Analytical model for shape anisotropy in thin-film nanostructured arrays: Interaction effects, J. Magn. Magn. Mater. 307, 171-177 (2006)

Models for arrays of elements of arbitrary shapes

M. Beleggia and M. De Graef, On the computation of the demagnetization tensor field for an arbitrary particle shape using a Fourier space approach, J. Magn. Magn. Mater. 263, L1-9 (2003)

E.Y. Vedmedenko, N. Mikuszeit, H. P. Oepen and R. Wiesendanger, Multipolar Ordering and Magnetization Reversal in Two-Dimensional Nanomagnet Arrays, Phys. Rev. Lett. 95, 207202 (2005)

N. Mikuszeit, E. Y. Vedmedenko & H. P. Oepen, Multipole interaction of polarized singledomain particles, J. Phys. Condens. Matter 16, 9037-9045 (2005)

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.20

1, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Collective effects: models based on loops

Possible effects

- Distribution of coercive fields
- (Dipolar) interactions

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.21

tut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

Distribution of properties

Effect of distributions and dipolar interactions are sometimes difficult to disentangle

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.22

el, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Collective effects: models based on loops

Minor loops: negative interactions

Example: dipolar interactions in arrays of Co/Au(111) pillars

Minor loops: negligible interactions

Diapositive 23

- OF28 mineurPOLAR185.pic Olivier Fruchart; 09/07/2005
- OF29 mineurPOLAR15.pic Olivier Fruchart; 09/07/2005

NON-SINGLE DOMAIN EFFECTS — Collective effects: models based on loops

Superparamagnetic regime: plot of inverse susceptibility

Diapositive 24

OF30 UnSurChi.pic Olivier Fruchart; 09/07/2005

NON-SINGLE DOMAIN EFFECTS — Collective effects: models based on loops

Henkel plots

O. Henkel, Phys. Stat. Sol. 7, 919 (1964) S. Thamm et al., JMMM184, 245 (1998)

Fig. 1. Explanation of how to measure the two different remanent magnetisations M_r and M_d .

Measure of dipolar interactions

$$\Delta M_{H}(x) = M_{d}(x) - [1 - 2M_{r}(x)]$$

Long experiments (ac demagnetization)

Better physical meaning than Preisach

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.25 tut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Collective effects: models based on loops

Preisach model

- G. Biorci et al., Il Nuov. Cim. VII, 829 (1958)
- I. D. Mayergoyz, Mathematical models of hysteresis, Springer (1991)

 $\stackrel{\scriptstyle{}_{\scriptstyle{\bigtriangledown}}}{\scriptstyle{\stackrel{\scriptstyle{}_{\scriptstyle{\leftarrow}}}}}$ No true link between real particles and μ

Solving

Long experiments (1D set of hysteresis curves)

Better suited to bulk materials with strong interactions

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.26 tut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

II.2. Coercivity in patterned elements

- 1. Characteristic length scales and critical size for single domain
 - 2. Near-single domain structures
 - 3. Flux-closure domains

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.27 tut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

Numerical values

 $\lambda_{\rm B} = \pi \sqrt{A / K}$ $\lambda_{\rm B} = 2 - 3 \, \text{nm} \longrightarrow \lambda_{\rm B} \ge 100 \, \text{nm}$ Hard Soft

 $\sqrt{A/K}$ is also often called the Bloch wall parameter. Notice also that several definitions of Bloch wall width have been proposed, e.g. with $\pi \iota$ or 2 as prefactor

Diapositive 28

OF31 Si temps, refaire schéma en français Olivier Fruchart; 22/03/2005

Typical length scale: Exchange length λ_{ex}

$$e = A(d\theta/dx)^{2} + K_{d} \sin^{2} \theta$$
Exchange
$$\int J/m$$
Dipolar energy
$$J/m^{3}$$

$$\lambda_{ex} = \sqrt{A/K_{d}}$$

$$= \sqrt{2A/\mu_{0}M_{s}^{2}}$$

 $\lambda_{ex} = 3 - 10 \text{ nm}$

Critical size relevant for nanoparticules made of soft magnetic material $D_{\rm c} \approx \pi \sqrt{3} \lambda_{\rm ex}$

Generalization for various shapes

$D_{\rm c} \approx \pi \sqrt{6A/(N\mu_0)M_{\rm s}^2}$

Quality factor Q

$$e = -K\sin^2\theta + K_{\rm d}\sin^2\theta$$

m.c. Dipolar energy $J/m \longrightarrow J/m^3$

$Q = K/K_{d}$

Relevant e.g. for stripe domains in thin films with perpendicular magnetocristalline anisotropy

Critical size for hard magnets

$$D_{\rm c} \approx 6E_{\rm w} / K_{\rm d} \approx 2.5 Q \lambda_{\rm B}$$

 $E_{\rm w} \approx 4\sqrt{AK}$ for hard magnetic materials

Notice:

Other length scales: with field etc.

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.29 nstitut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Configurational anisotropy (1/2)

Configurational anisotropy may be used to stabilize stable configuration

Higher order contributions to the anisotropy

M. A. Schabes et al., JAP 64, 1347 (1988) Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.30 Institut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Configurational anisotropy (2/2)

Polar plot of experimental configurational anisotropy with various symmetry

Color code: strength of anisotropy in a given direction **Radius**: size of measured pattern **Direction**: direction of measurement

R.P. Cowburn, J.Phys.D:Appl.Phys.33, R1-R16 (2000)

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.31 titut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — C and S states

At least 8 nearly-equivalent ground-states for a dot

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.32 titut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

Magnetization is pinned at sharp ends

Experiments Permalloy (soft)

K.J. Kirk et al., J. Magn. Soc. Jap., 21 (7), (1997)

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.33

itut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

Magnetization is pinned at sharp ends

Numerical micromagnetic calculation

Essentially Equivalent Topological Properties

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – CINCS, Orsay, France, 9.34

Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Vortex state

500

200

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.35 Institut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Van den Berg model (1/2)

Hypothesis Van den Berg model

Infinitely soft material (K=0) $\ell_{\rm mc} = 0$ Zero external magnetic field $e_{7} = 0$

2D geometry (neglect thickness)

Size >> all magnetic length scales (wall width)

 $\ell_{ex} \longrightarrow 0$

Solution

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.36 itut Néel, Grenoble, France http://lab-neel.grenoble.grrs.fr/themog/gruphog/out/clider/

NON-SINGLE DOMAIN EFFECTS — Van den Berg model (2/2)

Sandpiles for simulating flux-closure patterns

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.37 titut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Van den Berg model and anisotropy

Easy axis of weak magnetocrystalline anisotropy

Easy axis of weak magnetocrystalline anisotropy

Large dots

 \rightarrow many degres of freedom →many possible states →history is important →even slight perturbations can influence the dot (anisotropy, defects, etc.).

NON-SINGLE DOMAIN EFFECTS — Van den Berg model in field (1/3)

Generalization for non-zero field

The domains with magnetization parallel to the applied field are favored

P. Bryant et al., Appl. Phys. Lett. 54, 78 (1989)

See further extension to field arbitrarily-close to the saturation field:

A. DeSimone, R. V. Kohn, S. Müller, F. Otto & R. Schäfer, Two-dimensional modeling of soft ferromagnetic films, Proc. Roy. Soc. Lond. A457, 2983-2991 (2001)

A. DeSimone, R. V. Kohn, S. Müller & F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55, 1408-1460 (2002)

tut Néel, Grenoble, France

NON-SINGLE DOMAIN EFFECTS — Van den Berg model in field (2/3)

In the following, many pictures taken from Hubert's book

Zero field : agreement with Van den Berg's model

<u>Material</u>: Ni₈₀Fe₂₀ 'Permalloy', Py.

Longitudinal applied field

The domains with magnetization parallel to the applied field are favored

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.40

tut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

II.3. Manipulating domain walls

- **____ 1.** Preparation of states and domain wall states
- Details and use of domain walls in stripes **2**.
 - Magnetization processes inside domain walls 3.

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.41 tut Néel, Grenoble, France http://lab-neel.grenoble.cnrs_fr/themes/couches/ort/alidos/

Preparation of 'S' state

Transverse field to keep end domains aligned parallel to each other

Longitudinal field to reverse the magnetization

Preparation of 'S' state

End domains aligned mainly antiparallel owing to a dipolar shape effect

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.42

, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Preparation of states (2/4)

Nucleation in in-plane magnetized stripes

Pinning in stripes: notches Propagation

> Nucleation Pinning/depinning

Nucleation in out-of-plane magnetized stripes

NON-SINGLE DOMAIN EFFECTS — Preparation of states (3/4)

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.44 titut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Preparation of states (4/4)

NON-SINGLE DOMAIN EFFECTS — Use of domain walls

S. S. P. Parkin, IBM-Almaden U.S. patents 6834005, 6898132, 6920062 D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit & R. P. Cowburn, Magnetic domain-wall logic, Science 309, 1688 (2005)

NON-SINGLE DOMAIN EFFECTS — Magnetization processes inside vortices

Closure domains (flat)

Fig. 2. MFM image of an array of permalloy dots 1 μm in diameter and 50 nm thick.

The central magnetic vortex can be magnetized up or down using a perpendicular field

T. Shinjo et al., Science 289, 930 (2000)

T. Okuno et al., JMMM240, 1 (2002)

Theory and simulation

Micromagnetic simulation

A. Thiaville et al., Phys. Rev. B 67, 094410 (2003)

Require a Bloch point: Not well described in micromagnetism

First theoretical insight in Bloch points

W. Döring, J. Appl. Phys. 39, 1006 (1968)

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.47

nstitut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Magnetization processes inside vortices

Magnetic vortex core reversal by excitation with short bursts of an alternating field

R. Hertel et al., Phys. Rev. Lett. 98, 117201 (2007)

nstitut Néel, Grenoble, France

Electrical switching of the vortex core in a magnetic disk

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.49 tut Néel, Grenoble, France

II.4. Interfacial effects on magnetization reversal

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.50 stitut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Interfacial effects (F/AF 1/3)

Seminal studies

Field-cooled hysteresis loops:

Increased coercivity

Shifted in field

Exchange bias J. Nogués and Ivan K. Schuller J. Magn. Magn. Mater. 192 (1999) 203

Exchange anisotropy—a review A E Berkowitz and K Takano J. Magn. Magn. Mater. 200 (1999)

Institut

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.51

tut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Interfacial effects (F/AF 2/3)

Dependence of the blocking temperature on the nature of the matrix

tut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

Olivier Fruchart – Non-single-domain effects – European School on Magnetism – Cluj Sept 2007 – p.53 titut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

NON-SINGLE DOMAIN EFFECTS — Edge anisotropy

Experiments

Simulation/Theory diamètre [nm] 4 4.5 4.9 5.3 5.7 3.5 2.8 (b) 1.2 Anisotropie uniforme Anisotropie localisée sur les bords 1.0 $H_{\rm K}/H_{\rm K}$ 0.80.6 300 400 500 600 700 800 100 200 0 Nombre d'atomes S. Rohart, PhD Thesis (2005) S. Rohart, A. Thiaville, unpublished

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.54 tut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

Electric modification of intrinsic properties

See also: magnetic semiconductors, multiferroics etc.

Olivier Fruchart - Non-single-domain effects - European School on Magnetism - Cluj Sept 2007 - p.55

itut Néel, Grenoble, France http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/

SOME READING

- [1] O. Fruchart, A. Thiaville, *Magnetism in reduced dimensions*, C. R. Physique 6, 921 (2005) [Topical issue, Spintronics]
- [2] O. Fruchart, Couches minces et nanostructures magnétiques, Techniques de l'Ingénieur, REF.
- [3] Lecture notes from undergraduate lectures, plus various slides: http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/slides/
- [5] G. Chaboussant, Nanostructures magnétiques, Techniques de l'Ingénieur, revue 10-9 (RE51) (2005)
- [6] Magnetic domains, A. Hubert, R. Schäfer, Springer (1999, reed. 2001)
- [7] J.I. Martin et coll., O*rdered magnetic nanostructures: fabrication and properties*, J. Magn. Magn. Mater. **256**, 449-501 (2003).
- [8] R. Skomski, Nanomagnetics, J. Phys.: Cond. Mat. 15, R841–896 (2003).

