

Magnetic Shape Memory Alloys

- Magnetically Induced
 Martensite (MIM)
- Magnetically Induced Reorientation (MIR)
- Requirements for actuation
- "Exotic" materials

www.adaptamat.com

German Priority Program SPP 1239: "Modification of Microstructure and Shape of solid Materials by an external magnetic Field" <u>www.MagneticShape.de</u>

Multiferroics

Anisotropic magnetostriction

• **Single ion effect** (spin-orbit coupling) – no collective phenomenon

- Strain < 0.24 %
- + High frequency
- + Low magnetic field

Martensitic transformation

- T > T_M: Austenite (high symmetry)
- T < T_M: Martensite (low symmetry)

- No diffusion, reversible
- Twinned microstructure of martensite
- Thermal actuation
 - \Rightarrow conventional shape memory effect
- + Strain > 5%
- + High forces
- Low frequency

Prototype Ni-Mn-Ga, Shearing

 \rightarrow Phonon spectra

7M Martensite

Martensitic transformation of magnets

Martensitic transformation of magnets

MSM Solution Magnetically Induced Martensite (MIM)

Magnetic field favors ferromagnetic phase Clausius Clapeyron:

 $\frac{dT}{dH} = \frac{\Delta J}{\Delta S}$

- ∆J: magn. polarization
 difference in martensite
 and austenite state
- ΔS : entropy difference
- Magnetic actuation
- Latent heat (magnetocaloric effect): here a problem

Н

+ Remote actuation

Ni-Mn-In

Magnetic field favors high temperature austenite because its ferromagnetism is stronger than that of martensite

T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, A. Planes, Phys. Rev. B 73 (17) (2006) 174413

- Shift of $M_{\rm S}$ by -8 K/T
- Large magnetocaloric effect

Magnetically Induced Austenite (MIA)

Magnetic field favors ferromagnetic phase Clausius Clapeyron:

 $\frac{dT}{dH} = \frac{\Delta J}{\Delta S}$

- ∆J: magn. polarization difference in martensite and austenite state
- ΔS : entropy difference

Negative $\Delta J \rightarrow H$ stabilizes austenite

Magnetically Induced Austenite (MIA)

$Ni_{45}Co_5Mn_{36.7}In_{13.3}$

Hysteresis may inhibit reversibility !

- + Strain ~ 3% Hysteresis losses?
- + No anisotropy needed

Rubber like behavior

Twin boundary movement

A3: P. Entel, *U. Duisburg-Essen*

- Only highly symmetric twin boundaries are highly mobile
- But a collective movement would require to move 10²³ atoms simultaneously...

MSM Microscopic view of twin boundary movement

 Dislocation (step + screw) as elemental step of twin boundary movement

P. Müllner et al., JMMM **267** (2003) 325

 "Intrinsic" Peierls stress to move Burgers vector ~ 10⁻¹³ Pa

S. Rajasekhara, P. J. Ferreira Scripta Mat. 53 (2005) 817

Magnetically Induced Reorientation (MIR)

Twin boundary movement

No phase transition, affects only microstructure

Requires:

- Non-cubic phase
- High magnetocrystalline aniosotropy
- Easily movable twin boundary

- ++ Strain ≤ 10 % !
- + High frequency

- Rotation of magnetization must be avoided
 - ⇒ high magnetocrystalline anisotropy needed

MSN Domain and twin boundary dynamics

Y.W. Lai, N. Scheerbaum, D. Hinz, O. Gutfleisch, R. Schaefer, L. Schultz, J. McCord, Appl. Phys. Lett. **90** (2007) 192504

 Magnetic field moves twin boundary instead of magnetization rotation

Integral measurement of strain and magnetization

Ni-Mn-Ga 5M

O. Heczko, L. Straka, N. Lanska, K. Ullakko, J. Enkovaara, J. Appl. Phys. **91**(10) (2002) 8228

o moderate switching field $H_{\rm S}$ < 1 T

MS

Setup of a linear actuator

Magnetic Shape Memory Alloys

- Magnetically Induced
 Martensite (MIM)
- Magnetically Induced Reorientation (MIR)
- Requirements for actuation
- "Exotic" materials

www.adaptamat.com

German Priority Program SPP 1239: "Modification of Microstructure and Shape of solid Materials by an external magnetic Field" <u>www.MagneticShape.de</u>

Intrinsic properties (composition, phase)

- High martensitic transformation temperature ⇒ high application temperature
- High magnetocrystalline anisotropy ⇒ avoids rotation of magnetization
- High magnetization \Rightarrow high blocking stress
- Large maximum strain $\varepsilon_0 = 1 \frac{c}{a}$

Extrinsic properties (microstructure, texture)

- High strain $\mathcal{E} < \mathcal{E}_0$
- Low switching field $H_S < H_A$
- Easily moveable twin boundaries \Rightarrow rubber like behavior

Aim: high strain in low magnetic fields

Not fulfilled for:

- Martensitic transformation
 Tb, Dy, ReCu₂
- Ferromagnetism *Re*Cu₂, La_{2-x}Sr_xCuO₄
- High uniaxial magnetocrystalline Fe₇₀Pd₃₀, Ni-Mn-In anisotropy
- High magnetostriction

Ni-Mn-Ga

• Chemical ordering

Fe₇₀Pd₃₀, Tb, Dy

Anisotropic magnetostriction

O. Heczko, J. Mag. Mag. Mat. 290-291 (2005) 846

• Not appropriate to describe threshold like switching (Reorientation or Martensitic transformation)

Austenite: fcc Martensite: fct, c/a <1 two easy axis || a

R.D. James, M. Wuttig Phil. Mag. **77** (1998) 1273 J. Cui, T.W. Shield, R.D. James, Acta Mat. **52** (2004) 35

- No uniaxial anisotropy needed
- No chemical ordering

Tb_{0.5}Dy_{0.5}Cu₂

S. Raasch, et al. PRB **73** (2006) 64402

- no martensitic transformation
- orthorhombic (pseudohexagonal, 3 variants)

• 1.5 % strain at 3.2 T by reorientation

A. N. Lavrov, S. Komiya, Y. Ando, Nature 418 (2002) 385

A. N. Lavrov, Y. Ando, S. Komiya, I. Tsukada, Phys. Rev. Lett. 87 (2001) 17007

 $La_{2-x}Sr_{x}CuO_{4}$ (LSCO)

- Orthorhombic, twinning in ab plane, b axis (red domains) aligns parallel to magnetic field
- Antiferromagntic, weak ferromagnetic moment

Dy, Tb

Dy single crystal at 4 K

8% strain in Tb (40 T, 4K)

S. Chikazumi et al. IEEE Trans. Mag. MAG-5(3) (1969) 265

J. J. Rhyne et al. J. Appl. Phys. **39**(2) (1968) 892

• Pure elements

H. H. Liebermann, C. D. Graham, Acta Met. **25** (7) (1977) 715

Magnetic field favors high temperature austenite because its ferromagnetism is stronger than that of martensite

 No significant magnetocrystalline anisotropy (cubic ferromagnet) T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, A. Planes, Phys. Rev. B **73** (17) (2006) 174413

Magnetic Shape Memory Alloys

Magnetic Shape Memory Alloys

Magnetically Induced Martensite (MIM) Magnetically Induced Reorientation (MIR)

Essential

Martensitic transformation with large ΔJ

Low Hysteresis Low ΔS Transformation around RT

Magnetocrystalline anisotropy

31

Magnetocrystalline anisotropy Easily movable twin boundaries Beneficial Ferromagnetism (High J_{s})

Ferromagnetism (High J_S)Martensitic transformation
(rubber like behavior)Not needed

Magnetostriction

Domain and variant movement \rightarrow local mechanism

Martensitic and Ferromagnetic

Magnetically Induced Martensite (MIM)

- + Little constrains on microstructure
- + No magnetocrystalline anisotropy needed

Forces?

- High fields > 1 T
- Works only at the vicinity of martensitic transformation
- Magnetocaloric effect inhibits high frequency

Magnetically Induced Reorientation (MIR)

- Rubber like behavior needed
- High magnetocrystalline anisotropy
- Low forces
- + Moderate fields < 1 T
- + Works below martensitic transformation
- + High frequency (kHz) possible

