MEMS : an overview

- What ? why ? how ?
- Magnetic MEMS

Micro-magnets for MEMS

- Candidate Hard Magnetic Materials
- Preparation routes
- -Micro-fabrication
- -Beyond magnets

Nora M. Dempsey Institut Néel, CNRS/UJF, Grenoble, France

What are MEMS?

MEMS : "Micro-Electro-Mechanical Systems"

"Microsystems Technology" (MST) (MST) "Mecatronics"

machines which range in size from µm to mm e.g. actuators, motors, generators, switches, sensors....

electrostatic, thermal, piezoelectric, piezoresistive, capacitive, magnetic...

Common examples

- inkjet printer heads (ink ejection)
- accelerometers (airbag deployment...)
- gyroscopes (trigger dynamic stability control...)
- pressure sensors (car tires, blood...)
- displays (DLP video projectors...)
- optical switching technology (telecommunications)

Domains of application

Telecommunications

µ-switch for mobile phones commutators for optic fibre networks

Data storage

µ-positionner for HDD heads motorisation for HDD

Bio-technologies

less-invasive surgery, µ-injections, lab-on-chip, ophtalmology...

Automotive Aeronautics (Glass-cockpit...) Space (1 kg = 20 k\$!)

3/28

Consumer electronics

media players, gaming devices, footpods...

Why are MEMS of interest ?

SIZE : small and light ! portable applications - mobile phones, aerospace devices ... limited space applications - implantable devices, micro-surgery.....

COST : batch processing \Rightarrow cheap

ENERGY EFFICIENCY: they use little power themselves, + they can be used to improve efficiency in bigger systems (cars, houses..).

INTELLIGENT SYSTEMS: MEMS (eyes + arms + legs) + ELECTRONICS (brain)

Why size matters.....

effects not exploitable at the macro-scale can become of interest at the micron-scale

Surfaces effects dominate at small scales

Scaling laws

Gravitational force (weight)

Electrostatic force

$$F_{el} = \frac{\varepsilon_0 S V_0^2}{2d^2} = \frac{\varepsilon_0 L^2 V_0^2}{2d^2}$$

 $\propto L^2$

Scaling laws for different forces

For MEMS, weight is negligible,

surface forces may cause movement or deformation:
electrostatic force can be used for actuation (controlable)
capillary force can lead to MEMS failure (during fabrication or use)
Van der Waals force can lead to stiction

7/28

Scaling laws -resonance frequency increases ∝ 1/L size reduction -response time decreases (e.g. thermal exchange) -stiffness -power consumption

How are MEMS made ?

MEMS are made with techniques originally developed for the microelectronics industry

Building block for MEMS fabrication :

- I Deposition
- II Lithography
- III Etching

How are MEMS made ?

MEMS are made with techniques originally developed for the microelectronics industry

Building block for MEMS fabrication :

- I Deposition
- II Lithography
- III Etching

Deposition

chemical reaction:

- Chemical Vapor Deposition (CVD)
- Electrodeposition
- Thermal oxidation

physical reaction:

- Physical Vapor Deposition (PVD)
- Casting

Chemical deposition

Chemical Vapor Deposition

-Low Pressure CVD (LPCVD) deposition on both sides of wafer
-Plasma Enhanced CVD (PECVD) deposition on one side of wafer

!!! hazardous byproducts !!!

Electrodeposition

restricted to electrically conductive materials Well suited to Cu, Au, Ni 1µm to >100µm

Physical Vapor Deposition (PVD)

far more common than CVD for metals (lower process risk, cheaper material costs)

12/28

Wafer caroussel

Casting

-material dissolved in a solvent and applied to the substrate by spraying or spinning

- used for polymers, photoresist, glass
- thicknesses: from a single monolayer of molecules to tens of µm

How are MEMS made ?

MEMS are made with techniques originally developed for the microelectronics industry

Building block for MEMS fabrication :

- I Deposition
- II Lithography
- III Etching

Lithography

material

Pattern transfer

lift-off approach less common because resist is incompatible with most MEMS deposition processes (high temperatures + contamination)

How are MEMS made ?

MEMS are made with techniques originally developed for the microelectronics industry

Building block for MEMS fabrication :

- I Deposition
- II Lithography
- III Etching

Dry etching

1) Sputter etching - similar to sputtering deposition

2) Reactive ion etching (RIE) accelerated ions react at surface – have both chemical and physical etching
deep-RIE → hundreds of microns + almost vertical sidewalls, aspect ratios ≤ 50 : 1
"Bosch process" alternates repeatedly between two gases: gas # 1: deposition of a chemically inert passivation layer (polymer) gas # 2: etches, polymer on horizontal surfaces is immediately physically sputtered while sidewalls not sputtered

3) Vapor phase etching

material is dissolved at the surface in a chemical reaction with gas molecules e.g. HF for etching SiO_2 XeF₂ for etching Si

Etching

MEMS technologies

Bulk micromachining

- defines structures by selectively etching inside a substrate, typically Si is used and wet etched with KOH or TMAH
- relatively simple and inexpensive

Surface micromachining

- deposition / etching of different layers on a substrate
- many fabrication steps (expensive)
- can produce complicated devices

LIGA : x-ray Lithographie-Galvanoformung-Abformung (x-ray Lithography-Electrodeposition-Moulding)

x-ray litho. of PMMA to produce template for electro-dep. (e.g. Ni)

the electrodeposited structure may be used as a mould for replication from another material (plastic, ceramic)

- small, but relatively high aspect ratio devices

Why is magnetism of interest for MEMS ?

Remarkable features of magnetic interactions^{19/28}

Large forces Magnetic pressure = 4 bar / Tesla² = 400 mN/mm² / T² Large energy densities Magnetic: $\frac{1}{2}B^{2}/\mu_{0} => 400\ 000\ J/m^{3}$ @ 1 T Electrostatic : $\frac{1}{2}\epsilon_0 E^2 \implies 40 \text{ J/m}^3 @ 3 \text{ MV/m}$ (elect. breakdown in air) Long range Several 10 to 100 µm or more Contactless actuation Remote / Wireless actuation \rightarrow Medical implantable Action through sealed membranes / vaccuum / skin Suspension / Levitation (Bi)stability Magnets : permanent forces without power waste Long term forces - Safety Bidirectionality

Repulsion / Attraction

Homothetical scale reduction :

Field gradients & forces between magnets = increased

Magnitude and topology of field preserved:

$$\overrightarrow{H1(P)} := \frac{1}{4 \cdot \pi \cdot \mu o! \cdot r^{3}} \left(\begin{array}{c} \overrightarrow{J1 \cdot r} \\ 3 \cdot \overrightarrow{(J1 \cdot r)} \\ r^{2} \end{array} \right)$$

 $\Delta(\text{Field}) / \text{Distance} = \text{Gradient}_{x10} = x10$ Gradient x Moment = Force

Laplace/Lorentz forces by a magnet onto a current

21/28

same current density x same field = same force density

Effects of a scale reduction 1 / L on conductor / conductor interactions (volumic, massic) (at constant current density)

Effects of a scale reduction 1 / L on magnetic interactions (volumic, massic)

(at constant current density)

μ-coils can withstand gigantic current densities

thanks to better cooling

Heat dissipation = surface = d^2

=> S/V ratio = d²/d³ = 1/d : improves with scale reduction factor L

Cylindrical wire = S/V min Planar conductor = S/V max => S/V ratio increases also

Conductor = metallic thin film Si substrate = excellent heat conductor/absorber

Short time constants = current pulses = μ s

Classical electrotechnics : 5 A/mm² DC... tegrated µ-coils : up to 1 Million A/mm² in pulses!

Effects of a scale reduction 1 / L on magnetic interactions (volumic, massic) with increased current density × L_i

Scale reduction 1 / L	magnet	current	iron	induction $e = -d\Phi/dt$
magnet	× L	×L _i	× L	/ L × frequency
current	× L _i	$\times L^{2}_{i}/L$	$\times L^{2}_{i}/L$	$ \begin{array}{c} \times L^{2}_{i} / L^{2} \\ \times \text{ frequency} \\ \hline \end{array} $

The importance of μ -magnets

 $i = J_{.s} = J_{.\pi} R^2$

 $\mathbf{H} = \mathbf{N}.\mathbf{J}.\boldsymbol{\pi} \mathbf{R}^2 / \boldsymbol{\ell}$

 $H = N.i / \ell (A/m)$ A μ-magnet is much more interesting than a µ-coil/µ-electromagnet of same size

26/28

2R

coil

Some examples of magnetic MEMS.....

Deformable mirror for adaptive optics ^{27/28} (astronomy, ophtalmology...)

Energy harvesting (vibrations) : µ-generator (Univ. Hong Kong)

Membrane pump for µ-fluidics (Suwon, Korea)

MAGNETIC MICRO-ACTUATOR prototypes

Collab. G2ELab + CEA/LETI (Grenoble, France)

Planar <u>*µ*-motor</u>

8 & 15 pole pairs

Need for high quality integrated thick film magnets for MEMS !

Bistable ultra-fast

Micro-magnets for MEMS

- Candidate materials
- Integration issues
- Preparation of high performance materials in thick film form by sputtering
- -Film patterning
- -Beyond magnets

Nora M. Dempsey Institut Néel, CNRS/UJF, Grenoble, France

High performance permanent magnet materials

 \uparrow (BH)_{max} $\rightarrow \downarrow$ magnet volume

M_r	\leq	M_{S}
H_{c}	\leq	H_A

M_r, H_c determined by microstructure

Material	μ ₀ Μ _S (T)	μΗ _Α (T)	(BH) _{max,th} kJ/m ³	Т _с (К)
RE-TM				
Nd ₂ Fe ₁₄ B	1.61	7.6	514	585
SmCo ₅	1.05	40	220	1000
Sm ₂ Co ₁₇	1.30	6.4	333	1173
L1 ₀				
FePt	1.43	11.6	407	750
CoPt	1.00	4.9	200	840
Routes to prepare thick film magnets

Top-down routes

Bottom-up routes

Routes to prepare thick film magnets

Top-down routes

Bottom-up routes

Micro-magnets for MEMS

- Candidate materials
- Integration issues
- Preparation of high performance materials in thick film form by sputtering
- Film patterning

ESM2007 - September 9-18th 2007, Cluj-Napoca, Romania

Influence of processing on magnetic properties

• Sample degradation e.g. drop in coercivity: μ-machining, screen printing

- Dilution of magnetic phase → reduction of remanent magnetisation: screen printing (vol. fraction of binder) plasma spray (porosity);
 - Magnet texture : choice of process + process parameters will determine ability to produce a textured magnet
 For now Isotropic : screen printing, plasma spraying, rolling.....

zone of interest for MEMS

Integration issues : magnet insertion

Simple milli-systems

- 1) produce many individual magnets
- 2) "pick & place" magnet into µ-system

c.f. wrist-watches, surface mounted µ-electronic circuits

Planar <u>u-motor</u>

Complex micro-systems

produce and insert magnet in same step full integration, on-chip processing

Integration issues for film magnets

• Choice of substrate / buffer / capping layers:

will determine magnetic and mechanical properties, could influence cost of system must consider **compatibility** with - other µ-system components

- microfabrication techniques

• Film patterning

pre-patterned substrates deposition through masks post-deposition patterning

• Thermal compatibility

for high anisotropy phases*, need elevated processing temperatures $(Nd_2Fe_{14}B > 580^{\circ}C, SmCo_5 > 350^{\circ}C, FePt > 450^{\circ}C)$ -Wafer bonding allows full processing of magnet before integration of other system components

*non-L1₀ $Co_{80}Pt_{20}$ may be produced by electro-deposition at low processing temp.

e.g. Si vs MgO

Integration issues for film magnets

Mechanical compatibility

will have a build up of stress in thick films mechanical stress ∞ difference in thermal expansion coefficients of susbstrate /buffer layer /magnetic layer

Minimise strain : choice of substrate / buffer reduced surface area of magnet

• Chemical compatibility

pollution of - other system components

- microtechnology equipment (clean room environment !!)

Micro-magnets for MEMS

- Candidate materials
- Integration issues
- Preparation of high performance materials in thick film form by sputtering
- -Film patterning
- -Beyond magnets

ESM2007 - September 9-18th 2007, Cluj-Napoca, Romania

Preparation of thick film magnets by sputtering

-adapter for 200 mm substrates

Film preparation parameters

• Target:

Composition Target potential (kinetic energy of impinging ions)

• Substrate:

distance to target (thickness+homogeneity) material (Si, $Al_2O_3...$) bias

temperature during deposition

• Deposition conditions

Ar pressure

Post-deposition annealing

Film: composition µ-structure crystal structure crystal texture

NdFeB thick films

influence of deposition temperature

{Si / Ta (100 nm) / NdFeB (5µm) / Ta (100 nm) }

2-step process: deposition at $T_{sub} = X \ C + annealed in situ at 750 \ C for 10 min.$

Equiaxed grains

Columnar grains

Grain size \downarrow as T_{sub} \uparrow => \uparrow of the density of nucleation sites during deposition

Mechanical issues

have mechanical problems with continuous films.... on 100 mm wafer, central area ($\phi \approx 3$ cm) peels off when film annealed

Attributed to

differential thermal expansion (NdFeB vs Si) + volume change during crystallisation

B.A. Kapitanov et al., J. Magn. Magn. Mater. 127, 289 (1993).

Thick hard magnetic films (5 µm) on Si

Micro-magnets for MEMS

- Candidate materials
- Integration issues
- Preparation of high performance materials in thick film form by sputtering
- -Film patterning
- -Beyond magnets

ESM2007 - September 9-18th 2007, Cluj-Napoca, Romania

Micro-structured Magnets

Proposed routes for the structuration of magnetic films

1) Topographic

Etching of magnetic layer

irreversible

2) Magnetic

Thermomagnetic patterning

cf: thermomagnetic writing for recording media

reversible

Proposed routes for the structuration of magnetic films

1) Topographic

irreversible

2) Magnetic

Thermomagnetic patterning

cf: thermomagnetic writing for recording media

reversible

Topographically patterned films

« cold » deposition of Ta(100nm) / NdFeB (5 μm) /Ta (100 nm) + in-situ anneal (750℃/10 min)

Need local magnetic characterisation !

Trench filling on pre-patterned wafers

Local magnetic characterisation for MEMS

Need to measure stray fields produced by μ -magnets :

- to characterise inhomogeneities (process optimisation)

- to calculate forces at work in the μ -system (simulation/design optimisation)

Tools : Scanning Hall probes (sensitivity + scan param. adapted to MEMS) Kerr microscope + MOIF

Tver State University (Russia)

Wet etching/planarisation of RE-TM films

Films etched in amorphous state

Hystersis loops _____ of wet etched /planarised and annealed NdFeB

#1: capped with Ta + annealed#2: ion etched + capped with Ta + annealed#3: annealed

Proposed routes for the structuration of films

1) Topographic

Deposition on prepatterned subst.

+ polishing

2) Magnetic

Thermomagnetic patterning

Etching of magnetic layer

irreversible

cf: thermomagnetic writing for recording media

reversible
Thermo-Magnetic patterning of NdFeB films

Magnetisation modulation due to Fresnel diffraction at mask Pitch (~12 μ m) determined by λ_{laser} and

distance from mask to sample.

Demonstrates the perspective

for optical interference thermomagnetic writing

Applications of µ-magnets

RF µ-switches

Collaboration: G2ELab : **µ-system designer** LETI : **µ-fab platform** Institut Néel : **magnet films** Alcatel Space : **end user**

Funding: ANR "Nanomag2"

58 process steps (including 9 litho.)

Diamagnetic levitation

LEG and CEA (Biochips Laboratory, SMOC/LETI)

« clip » C. Pigot

H. Chetouani et al., Transducers '07

Contactless containment of 3µm latex microbeads with linear magnetic traps

Micro-magnets for MEMS

- Candidate materials
- Integration issues
- Preparation of high performance materials in thick film form by sputtering
- -Film patterning
- -Beyond magnets

ESM2007 - September 9-18th 2007, Cluj-Napoca, Romania

Beyond hard magnets: switchable materials

New functionality (e.g. laterally resolved modifications by controlled laser heating)

E-field switchable

Novel concept Unexplored potential

e.g. FePt, FeRh

Strain switchable

Magnetostrictive

Multiferroics

magnetic shape memory

Contactless !

Thermo-switchable materials

Antiferro ⇔ ferro

on / off switching

up / down switching

GdCo₃Cu₂

Ferrimagnetic

Compensation

In-plane ⇔ out-of-plane

90° switching

E-field switchable materials

27/28

Other Magnetic Materials for MEMS

- Magnetostrictive

- Magnetic Shape Memory Alloy

See **K. Dörr** (talk) + **M. Thomas** (poster)

28/28

Acknowledgments

Institut Néel :

A. Walther (PhD), C. N'dao (PhD) and D. Givord

G2Elab : O. Cugat, J. Delamare, G. Reyne and H. Chetouani (PhD)

LETI/CEA C. Marcoux, B. Desloges, C. Dieppedale

TVER STATE UNIVERSITY

R. Grechishkin, M. Kustov (PhD)

WEB:

Bernard Legrand (IEMN) « Ecole Nanosciences et Nanotech. – Autrans 2006 »

http://www.mems-exchange.org

http://www.memx.com

Applications of THERMO-REVERSIBLE Permanent Magnet

 $\rm{GdCo}_{3}\rm{Cu}_{2}~(~{\it T}_{\rm{comp}}~\rm{is}~90~^{o}\rm{C})$

thermally controlled Actuator:

suspended TR magnet rotates by 180° when heated above T_{comp} indicates direction of TM magnet

remotely interrogated temperature sensor :

signal element square loop soft magnetic tape (nc $Fe_{81}B_{13.5}Si_{3.5}C_2$) producing detectable harmonics.

Bias with magnet \rightarrow appearance of even harmonics

Grechishkin et al. APL **89**, 122505 (2006); D. Mavrudieva et al, SENSOR LETTERS **5**, 1 (2007)