Modern Electronic Structure: many-body physics in nano-world

Liviu Chioncel Graz University of Technology Austria

Universitatea din Oradea Romania

Content

NANO scale More than just length and size Electronic structure, Density Functional Theory, implementations Many-body physics and electronic structure Dynamical Mean Field Theory (DMFT) Magnetism in nanosystems - Molecular magnets – Surface states vs. Kondo effect - Correlated adatom on a metal surface

Nano-scales in every day life

Development of Nanotechnology

Fundamental Understanding

Characterization and Experimentation

> Synthesis and Integration

Nano to Macro Inorganic and Organic Optical with Mechanical with Electrical with Magnetic with ... Modeling and Simulation

Nanostructures (At least one dimension is between 1 - 100 nm)

2-D structures (1-D confinement):

- Thin films
- Planar quantum wells
- Superlattices

1-D structures (2-D confinement):

- Nanowires
- Quantum wires
- Nanorods
- Nanotubes
- 0-D structures (3-D confinement):
 - Nanoparticles
 - Quantum dots

Si Nanowire Array

6

Multi-wall carbon nanotube

 $Si_{0.76}Ge_{0.24}/Si_{0.84}Ge_{0.16}$ superlattice

NaNo....

"The art of understanding / developing materials on an atomic or molecular scale with the aim of building devices."

Condensed matter physics Quantum theory & Electronic structure

Electrons in solids

- Effective potential

- Bloch states
- Pauli principle

FERMI sea

1964

Density Functional Theory (DFT)- Effective one-particle states- Local Density Approximation (LDA)

?

Behaviour at different dimensions

Density Functional Theory (DFT)

many-particle interacting system -> non-interacting reference system

 $F[\rho(r)] = F_{H}[\rho(r)] + F_{xc}[\rho(r)]$ $F_{H}[\rho(r)] = \frac{1}{2} \int dr dr' \rho(r) V_{e-e} \rho(r')$ $F_{xc}[\rho(r)] = \frac{1}{2} \int dr dr' V_{e-e} \int_{0}^{1} d\alpha g_{\alpha}[\rho, r, r']$

Hohenberg-Kohn theorems:

1.Existence of the single particle density of a non-degenerate ground state of an interacting electron system

2.Variational principle The total energy of the N-electron system is minimized by the ground state electron density Local density approximation

$$g_{\alpha}[\rho, r, r'] = \left\langle (n(r) - \rho(r))(n(r') - \rho(r')) \right\rangle$$
$$g_{\alpha}[\rho, r, r'] = \left[\frac{\delta F_{\alpha}}{\delta \rho \delta \rho'}\right]_{rr'}$$
$$F_{xc}^{LDA}[\rho(r)] = \frac{1}{2} \int dr \rho(r) \mathcal{E}_{xc}^{LDA}[\rho(r)]$$

DFT implementations: choices of the methods

How well performs the DFT-LSDA

The Fermi Liquid Theory (1957-59):

- Quasiparticles weak interactions
- Interactions slowly switched on
- Energy levels modified
- Eigenstate given by occupation number

$$E = \sum_{\sigma,k} n_{\sigma}(k) \mathcal{E}(k) + \frac{1}{2} \sum_{\sigma,\sigma',k,k'} f_{\sigma,\sigma'}(k,k') n_{\sigma}(k) n_{\sigma'}(k')$$

DFT-LSDA - fails for correlated electrons...

- Mott insulators (long range order) V2O3
- High Tc superconductors (quasi 2D)
- Organic conductors (quasi 1D)
- Quantumdots (0D)

Correlated electrons on lattices

$$H = \sum_{ij} (t_{ij} + \mu \delta_{ij}) \cdot c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

U/tChemical potential

Solving the correlated electrons problem

Impurity embedded in a fermionic bath

P.W.Anderson

τ τ

G.Kotliar

Local quantum ^{G.K} fluctuations = dynamics

Mean Field Theory

Dynamical Mean Field Theory

Dynamical Mean-Field: Cavity construction

Effective medium characterized by the action:

$$S_{eff} = -\int_{0}^{p} d\tau \int_{0}^{p} d\tau' c_{\sigma}^{+}(\tau) G_{bath,\sigma}^{-1}(\tau - \tau') c_{\sigma}(\tau') + U \int_{0}^{p} d\tau n_{\uparrow}(\tau) n_{\downarrow}(\tau)$$

Single impurity in the effective medium:

$$G_{\sigma}(\tau - \tau') = - \left\langle T_{\tau} c_{\sigma}(\tau) c_{\sigma}^{+}(\tau') \right\rangle_{S_{eff}}$$

SCF condition connect the impurity solution with the effective medium

$$G_{bath,\sigma}^{-1} = i\omega + \mu - t^2 G_{\sigma} - \sigma H$$

W.Metzner, D. Vollhardt, PRL 62,(1989) A.Georges et.al. Rev. Mod. Phys 68,13 (1996)

Analogy with conventional MF

$$H = \sum_{ij} J_{ij} S_i S_j$$
$$H_{eff} = (\sum_i J_{0i} S_i) S_0 = z Jm S_0 = h_{eff} S_0$$
$$m = \langle S_0 \rangle = tanh(\beta z Jm)$$
$$J_{ij} \sim 1/z$$

DMFT solution for the Hubbard model

Diagrammatic: Iterated Perturbation Theory

 $G_0^{-1} = G^{-1} + \Sigma \blacktriangleleft$

Yoshida & Yamada Prog. Theor. Phys. 46, 244, 1970

$$H_I = U(n_{\uparrow} - 1/2)(n_{\downarrow} - 1/2)$$

Compute Self-energy in the second order perturbation theory

$$\Sigma^{(2)} = \bigcup_{\substack{\mathsf{G}_0\\\mathsf{G}_0}} \bigcup_{\mathbf{G}_0} \bigcup_{\mathbf{G}_0}$$

 $\blacktriangleright G_0(\omega) \to \Sigma(\omega) = FT(U^2 G_0^3(\tau)) \to G = \int \frac{\rho^0(\varepsilon) d\varepsilon}{i\omega - U/2 - \Sigma(\omega)}$

18

Metal to Insulator transition IPT-solution

Georges & Kotliar PRB 45, 6479, 1992

Zhang, Rozemberg, Kotliar PRL 70, 1666, 1993

Exact Diagonalization

$$H_{AM} = \sum_{k} \varepsilon_{k} c_{k}^{\dagger} c_{k} + \sum_{k} V_{k} f^{\dagger} c_{k} + hc. + Un_{f\uparrow} n_{f\downarrow}$$

Mapping to the Anderson impurity model

$$G_0^{-1}(i\omega_n) = i\omega_n + \mu - \int d\omega' \frac{\Delta(\omega')}{i\omega_n - \omega'}$$
$$G_0^{-1}(i\omega_n)^{n_s} = i\omega_n + \mu - \sum_{p=2}^{n_s} \frac{V_p^2}{i\omega_n - \varepsilon_p}$$
$$H = H_0(V, \varepsilon) + Un_{f\uparrow} n_{f\downarrow} \xrightarrow{E.D} G$$
$$G_0^{-1} = i\omega - t^2 G$$

Get new set of parameters

$$\{V, \mathcal{E}\}$$

Solution corresponding the Anderson Hamiltonian for a finite number orbitals ns

> Modified Lanczos (Dagotto & Moreo '85) Recursion Method

New set of parameters

$$G^p \cong G$$

Metal-Insulator transition

Self-energy (QMC-ED-IPT)

Spectral function DOS (ED-IPT)

ω

U=1 1.5 2.0 2.5 3.0 3.5

> U=1 1.5 2.0 2.5 3.0 3.5

Realistic description of correlations in solids

DFT(LDA+U) = LDA + on-site Coulomb interaction between localized electrons on the same ion; mean field approach for strongly correlated materials; no dynamics

DFT(LDA+DMFT) = Treats Hubbard band and QP's on the same footing; many energy scales=many competing forms of interactions

Applications: Magnetism in nano-systems

Molecular magnetism - Nano-magnets Correlated surface magnetism Surface states and the Kondo effect Dimensional crossover - 1D systems – From Fermi to Luttinger liquid Correlated adatom trimer on a metal surface

Molecular architecture: new

nanomagnets

B. Barbara,
J. Friedman,
D. Gatteschi,
R. Sessoli,
W. Wernsdorfer
1994

Computing properties:

-Exchange Interactions (LDA,LDA+U, LDA+DMFT)

-Excitation energies

-anisotropy

Magnetic Co-nanoparticles at Pt-surface

Magnetism vs. Kondo screening: Huge magnetic anisotropy for Co on Pt

Scanning Tunneling Microscopy and Spectroscopy

Allows to

Obtain information about the surface topography via I ~ V LDOS exp(-2kz)

Investigate the surface electronic structure on the atomic scale via dI/dV ~ LDOS exp(-2kz)

STM and Kondo

H.C. Manoharan et.al., Nature 403, 512, 2000

The magnetic moment of the "4f "electron is screened by the conduction electrons spins (Kondo effect). As a consequence, a replica of the local orbital arises at the Fermi level called Kondo-Suhl resonance

1964- J.Kondo: theory

4f (local) moments screening by conduction electrons spins "Kondo screening"

STS investigations of the Cr(001) electronic structure

O. Kolesnychenko et. al. Nature (2002)

Orbital Kondo resonance on Cr(001)

Cr(001) has not only d_{z^2} , but also two degenerated d_{xz} , d_{yz} surface states

The interaction of these states with the conduction electrons can lead to the formation of a many-body Kondo resonance near the Fermi level

Dimensional crossover: Chain-DMFT

Crossover between the Luttinger-liquid and coherent Fermi liquid, difficulty: breakdown of perturbation expansion in

E. Arrigoni, PRL 83, 128 (1999); PRB 61, 7909 (2000)

Generalization of DMFT = limit of infinite transverse dimensionality

 $\begin{aligned} z_{\perp} &\to \infty \\ t_{\perp} = \frac{\widetilde{t_{\perp}}}{\sqrt{z_{\perp}}} \\ D(\varepsilon_{\perp}) &= \sum_{k_{\perp}} \delta[\varepsilon_{\perp} - \varepsilon(k_{\perp})] \end{aligned}$

Self-energy independent of transverse momentum

$$\kappa = (k, k_{\perp})$$
$$\sum = \sum (k, i\omega)$$

Quasi-one-dimensional organic conductor: weakly coupled chains

Effective 1d-problem in the bath (QMC) with self-consistency condition

Chain-DMFT for quasi-1D system

Effective one-dimensional problem:

$$H = \sum_{m} H_{1D}^{m} - \sum_{\langle m,m' \rangle} t_{\perp} \sum_{i,\sigma} (c_{im\sigma}^{+} c_{im'\sigma} + h.c.)$$

A. Georges et al. PRB, 61,16393 (2000)

$$S_{eff} = \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{i,j,\sigma} c_{i\sigma}^{+}(\tau) G_{bath}^{-1}(i-j,\tau-\tau') c_{j\sigma}(\tau') + \int_{0}^{\beta} d\tau H_{int}^{1D} [\{c_{i\sigma},c_{i\sigma}^{+}\}]$$

$$G(i-j,\tau-\tau') = -\langle T_{\tau}c_{i}(\tau')c_{j}^{+}(\tau') \rangle_{eff}$$

$$G(k,i\omega) = \int d\varepsilon_{\perp} \frac{D(\varepsilon_{\perp})}{i\omega + \mu - \varepsilon_{k} - \Sigma(k,i\omega) - \varepsilon_{\perp}}$$

$$G_{bath}^{-1} = \Sigma + G^{-1}$$

Magnetic nanoclusters on surface

Experiment:STM: dl/dV spectra

A single antiferromagnetic chromium trimer on gold surface:

M. Crommie Phys. Rev. Lett. 87, 256804 (2001)

Interplay between single-impurity Kondo effect and RKKY exchange

Replacement of Heisenberg

exchange by Ising one

Kondo resonance is observed for isosceles trimer (state #2)

Correlated adatom on surface

Questions:

- Is the difference between the Heisemberg and Ising types of exchange interaction essential?
- How does the geometry of the problem affect the Kondo effect

Heisenberg vs.lsing exchange

Intersite exchange term can have Heisenberg (SS) or Ising (SzSz) form

Exchange integral J antiferromagnetic (AFM, J>0) or ferromagnetic (FM, J<0)

One can see drastic difference between Heisenberg and Ising types of Interaction for antiferromagnetic case 40

Equilateral and Isoscel Trimers

Density of states at geometry modification of the trimer

Equilateral (ET) and isosceles (IT) trimers

J₂₃=J, J₁₂=J₁₃=J/3

One can see a reconstruction of the Kondo resonance for isosceles trimer at antiferromagnetic exchange interaction

Conclusions and perspectives

Summary for applications

Molecular magnets:

Surface states vs. Kondo physics

- STS measurements on Cr(001) surface reveal a very narrow resonance near the Fermi level and visualized its orbital character
- Within Dynamical Mean-Field Theory, the observed peak is explained as an Orbital Kondo resonance from the two dxz and dyz degenerated surface states
- This is a first evidence that the surface orbital degrees of freedom can lead to the Kondo effect

Correlated adatom

 Study of multi-center Kondo systems (Cr-trimer on Au) can open a new research field of quantum coherence effects in nanosystems

Reducing dimensionality -> Nanoscopy

- Correlated electron materials
- Explore more and higher quality materilas
- Dynamics
- Potential correlated elctrons devices

Quantum dots - 0 dimensions

"artificial atoms"

"A mesoscopic island containing conduction electrons"

isolated regime, droplet,...

microscopic < mesoscopic <macroscopic</pre>

- electrons move coherently (QM at work) and experience system-specific properties

- correlation effects are important
- large compared to atomic physics ~
- fluctuations are important...

energy of adding an electron $E_C \sim \frac{e^2}{\varepsilon d} \sim \frac{1}{13} \frac{a_0}{d} \frac{e^2}{a_0} \sim 10 K$ wavelength $\lambda_F \sim 10 \ nm$ electrons $N = (d / \lambda_F)^2 \sim 100$ Fermi energy

 $E_F \sim \hbar^2 / (\lambda_F^2 m^*) \sim 100 K$ Level spacing

$$\Delta \sim E_F \ / \ N \sim 1 K$$