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1 NANO scale
— More than just length and size

1 Electronic structure,
— Density Functional Theory, implementations

® Many-body physics and electronic structure
— Dynamical Mean Field Theory (DMFT)

B Magnetism In hanosystems
— Molecular magnets

— Surface states vs. Kondo effect
— Correlated adatom on a metal surface




Nano-scales in every day life
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Nano-scale iIn numbers

Water molecules — 3 atoms
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Development of Nanotechnology

Fundamental
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and
Experimentatio

Modeling and
Simulation

Synthesis and
Integration

Nano to Macro
Inorganic and Organic
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Nanostructures
(At least one dimension is between 1 - 100 nm)

m 2-D structures (1-D confinement):
— Thin films
— Planar quantum wells
— Superlattices

m 1-D structures (2-D confinement):
Nanowires
Quantum wires
Nanorods
Nanotubes Multi-wall carbon
m 0-D structures (3-D confinement): nanotube
— Nanoparticles I
— Quantum dots
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® “The art of understanding / developing

materials on an atomic or molecular scale
with the aim of building devices.”




Condensed matter physics

Quantum theory & Electronic structure




Electrons In solids

- Effective potential °
- Bloch states - FERMI sea
- Pauli principle .

} o

Density Functional Theory (DFT)
- Effective one-particle states
- Local Density Approximation (LDA)

Behaviour at different dimensions




Density Functional Theory (DFT)

many-particle interacting system == non-interacting reference system

Hohenberg-Kohn theorems:

F[,O(V)] = Iy [:0(’”)] 1 ['O(r)] 1 of the single particle

. [,O(r)] = L jdrHr)Ve_ep(r') density of a non-de_generaye
2 ground state of an interacting

electron system

1 1
F, [,O(r)] = 5 Jdrdr'Ve_e Jda’ga [,O,r,r']
0

The total Local density approximation

energy of the N-electron system is
minimized by the ground state galo.r.r'| = ((n(r) = p(r)(n(r") = p(r')))

electron density OF
i1

F )= faroe, 1o




DFT implementations: choices of the methods

All-electron full potential
All-electron muffin-tin
All-electron PAW GW

.. . Pseudopotential LDA+U
Fully-relativistic Beyond LDA =——————) G|
Semi-relativistic GGA(generalized gradient)
Non-relativistic LDA(local density)

KehnzShamEeguatici
1

_Eljz +V(7") l E! ) LIJik 3 gl'kLPik

Atomic orbitals (Gaussian, Slater, numerical)
Serealie Plane waves

Non-periodic Augme_ntatlon (FLAPW, LMTO,ASW)
Numerical

Spin-polarized
Non-spin-polarized




How well performs the DFT-LSDA

2 The Fermi Liquid Theory (1957 -59):
— Quasiparticles - weak interactions
— Interactions - slowly switched on
— Energy levels - modified
— Eigenstate - given by occupation number

E = Zn (k)s(k)+— AN OO M(D]  Levlandau

0'0' NN

1 DFT-LSDA - fails for correlated electrons
— Mott insulators (long range order) V203
— High Tc superconductors (quasi 2D)
— Organic conductors (quasi 1D)
— Quantumdots (0D)




Correlated electrons on lattices
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Solving the correlated electrons problem

Impurity embedded
Y| in a fermionic bath

P.W.Anderson

!

G.Kotliar

Local guantum
fluctuations = dynamics

Mean Field Theory Dynamical Mean Field Theory
14




Dynamical Mean-Field: Cavity construction

Effective medium characterized by the action:

Bob 5
o = - I dr j dre:(r)G, L, .t -1, (') +U j drn (7)n, (7)
0 0 0

Single impurity in the effective medium:

G, (7 =1) = ~(Teo (7)e (1)

eff

SCF condition connect the impurity
solution with the effective medium

G,  =iw+u—-t’G,—dH

bath,o

W.Metzner, D. Vollhardt, PRL 62, ....(1989)
A.Georges et.al. Rev. Mod. Phys 68,13 (1996)




Analogy with conventional MF

H = Z J@jSz'Sj
ij

Heff = (Z J()@'SL')SO = szSO = heffSO
m = (Sp) = tanh(BzJm)

Jij ~ 1/2

H = =3 tijchcjo + U 3 nigni

ijo i
SesrlGal = = [ [ drdr ¢, G5" cor+ U [ dr’ norn,
Gyl = iwn + p — G (iwy)

tij ~ 1//2



DMFT solution for the Hubbard model

H :Z(tij +,UO:.].)B’;C]U +UZ”’H”N
ij i

—_— U=1
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Diagrammatic: Iterated Perturbation

Yoshida & Yamada B
Prog. Theor. Phys. 46, 244, 1970 [_[1 —U(I/ZT -1/ 2)(7’1l — 1 2)

Compute Self-energy in the second
order perturbation theory

Gy(@) ~ 2() = FT(U°G}(1)) - G = j%




Metal to Insulator transition
IPT-solution

Georges & Kotliar
PRB 45, 6479, 1992

Zhang, Rozemberg, Kotliar
| PRL 70, 1666, 1993




Exact Diagonalization

H, =) &cc,t> V. fc, +the.+tUn, n Mapping to the
AM Zk: K=k ™k Zk: kf k VARWAN Anderson impurity model

A(a'")
i —w

G, \(iw,) = ie, + u~ [de

A p i sz Solution corresponding the
G, (iw)" =iw, + U- Z Anderson Hamiltonian for a finite
p=2 number orbitals ns

H =H,V,e)+Un, n,
B . 2 Modified Lanczos
= iw—tG
GO (Dagotto & Moreo ’'85)
Recursion Method

Get new set
of parameters {V’ g}




Algorlthm .  Parameterization (2N parameters, ai, bi, i=1,N)

0O tbN

H :[{O(az‘abl')-l-(]nmnol |:| H)—) G

New set of parameters




Metal-Insulator transition

Self-energy Spectral function
QMC-ED-IPT




Realistic description of correlations in solids

®m DFT(LDA+U) = LDA + on-site Coulomb
Interaction between localized electrons on the
same ion; mean field approach for strongly
correlated materials; no dynamics

®DFT(LDA+DMFT) = Treats Hubbard band and
QP’s on the same footing; many energy
scales=many competing forms of interactions




Flow diagram for the LDA+DMFT approach

4 Band problem (LDA)

N(E)

_—
Z [GL_ZIDA N Z]_1 =G,

DMFT self-consistency

— — =
Gloc T Z — Gbath




SCF scheme- LDA+DMFT

Pade analytical continus

G(c)

SPT-FLEX

é

LDA(EMTO): L.Vitos et al. Comp. Mater. Sci. 18, 24 (2000) Ef
DMFT(SPT-FLEX): M.l.Katsnelson et al. J.Phys.Cond.Matter. 11, 1037 (1999)
A.l.Lichtenstein et al. PRB 57, 6884 (1998)
LDA+DMFT: L. C., L.Vitos, I.Abrikosov, J.Kollar, M.l. Katsnelson and
A.l. Lichtenstein, PRB 67, 235106 (2003)




Applications: Magnetism In nano-systems

1 Molecular magnetism - Nano-magnets

1 Correlated surface magnetism
— Surface states and the Kondo effect

® Dimensional crossover - 1D systems
— From Fermi to Luttinger liquid

3 Correlated adatom trimer on a metal
surface




Molecular architecture: new

nanomag nets
B. Barbara,

J. Friedman,

D. Gatteschi,
R. Sessoli,

W. Wernsdorfer

-Exchange Interactions
(LDA,LDA+U, LDA+DMFT)

-Excitation energies

-anisotropy




Magnetic Co-nanoparticles at Pt-surface

Magnetism vs. Kondo screening:
Huge magnetic anisotropy for Co on Pt

el Tl A

-
-

Colsand ~

S. Rusponi, et. al., Nature 2003

Pt substrate

ardella, et al Science 2003




Scanning Tunneling Microscopy and
Spectroscopy

STM/STS
Allows to

Obtain information about the
surface topography via
I~V LDOS exp(-2k~)

Investigate the surface
electronic structure on the
atomic scale via

dl/dV ~ exp(-2kz)

29




STM and Kondo

H.C. Manoharan et.al., Nature 403, 512, 2000

o

di/dV (arb. units)
= o
o

o
h

STM spectroscopy on and off a Co atom
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1933- van den Berg: exp.

resistance

1964- J.Kondo:
theory

emperaturs

Kondo
temperature

41 (local) moments screening
by conduction electrons spins
31

“Kondo screening”




STS investigations of the Cr(001)
electronic structure

' I
total d

0.0 0.5

bias voltage, (V) _ . : U |

energy (eV)

O. Kolesnychenko et. al. Nature (2002)




Orbital Kondo resonance on Cr(001)

Cr(001) has not only d 2,
but also two degenerated
d,,d,, surface states

The interaction of these states with
the conduction electrons can lead to
the formation of a many-body Kondo
resonance near the Fermi level




Dimensional crossover: Chain-DMFT

Crossover between the Luttinger-liquid and coherent Fermi
liquid, difficulty: breakdown of perturbation expansion in .

E. Arrigoni, PRL 83, 128 (1999); PRB 61, 7909 (2000)

Generalization of DMFT = limit of infinite transverse dimensionality

Self-energy independent of transverse momentum




Quasi-one-dimensional organic
| Conductor weakly coupled chains

(TMTTF),PF,

Effective 1d- problem in the bath (QMC)
with self-consistency condition




Chain-DMFT for quasi-1D system

Effective one-dimensional problem:
A. Georges et al.
il — ZHI”Z’) DN ED (Y YAN  PRB, 61,16393 (2000)

<m m> 1,0

jdr jdr N e (DG i= . T=T)e,, (') + jdrglf[{%,c; |

1,],0

G(i=j,r-1")==<Tc (1)c;(T') >

G(k,iw) = J‘dgm¢
iwtu—&, —2(k,iw)—&;

eff




Luttinger to Fermi Liquid crossover
Hp ==Y (¢iCo the)+UD n. n,

S. Biermann et. al
E,(ky) =2t cosk, PRL, 87, 276405 (2001)

On-chain spin/charge response function

X, (D) =(8*(J.0)S*(J.1) = ;X (6 Fermi surface

i . ~(1+K )
)(s (T) _)(s (ﬂ/z)(snlm/ﬂ) 5D(k§) = /’I_Rez(kﬂia)n:l) —£k

Quasiparticle residue

‘o
Il




Magnetic nanoclusters on surface
Experiment:STM: dI/dV spectra

A single antiferromagnetic chromium trimer on gold surface: Interplay between single-impurity
M. Crommie Phys. Rev. Lett. 87, 256804 (2001) Kondo effect and RKKY exchange

e Chromium Cluster l
"""" > | Spectroscopy on Au(111)
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Replacement of Heisenberg
exchange by Ising one



Correlated adatom on surface

m Questions:

— |Is the difference between
the Heisemberg and Ising |
types of exchange
Interaction essential?

— How does the geometry of
the problem affect the
Kondo effect




Heisenberg vs.Ising exchange

Intersite exchange term can have Heisenberg (SS) or Ising (SzSz) form

Exchange integral J antiferromagnetic (AFM, J>0) or ferromagnetic (FM, J<0)




Equilateral and Isoscel Trimers

Density of states at geometry modification of the trimer

Equilateral (ET) and isosceles (IT) trimers

J23=J, J12=J13=J/3




Conclusions and perspectives

Summary for applications
1 Molecular magnets:

™ Surface states vs. Kondo physics

— STS measurements on Cr(001) surface reveal a very narrow resonance near the
Fermi level and visualized its orbital character

— Within Dynamical Mean-Field Theory, the observed peak is explained as an
Orbital Kondo resonance from the two dxz and dyz degenerated surface states

— This is a first evidence that the surface orbital degrees of freedom can lead to
the Kondo effect

1 Correlated adatom

— Study of multi-center Kondo systems (Cr-trimer on Au) can open a new research
field of quantum coherence effects in nanosystems

@ Reducing dimensionality -> Nanoscopy
Correlated electron materials
Explore more and higher quality materilas
Dynamics
Potential correlated elctrons devices




Quantum dots - O dimensions

“artificial atoms”

Island containing conduction electrons”

\ Isolated regime, droplet,...

- electrons move coherently (QM at work) and
experience system-specific properties
- correlation effects are important
- large compared to atomic physics ~
- fluctuations are important...




¥ energy of adding an
electron o’

rwavelength A ~10 nm
¥ electrons

=(d/A,.) ~100
¥ Fermi energy

~ 0’ (Am ) ~100K
¥ Level §pacmg( )
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