SOFT MAGNETIC NANOCRYSTALLINE/NANOSTRUCTURED MATERIALS PRODUCED BY MECHANICAL ALLOYING ROUTES

Ionel Chicinaş

Department of Materials Science and Technology, Technical University of Cluj-Napoca, Romania

 $D = 10 \text{ nm} \longrightarrow F = 30\%$ $D = 100 \text{ nm} \longrightarrow F = 3\%$

For example: Coercive field H_C

depend on

intrinsic properties (anisotropy) structure (grain size, stresses, inclusions,etc.

For example: Coercive field H_C

Polycrystalline materials $H_c \sim 1/D$

For example: Coercive field H_C

G. Herzer, Scripta Metall et Mater., 33 (1995) 1741-1756.

European School of Magnetism, Cluj-Napoca, 9-18 Sept. 2007, 3

 $H_{\rm C} \sim 1/D$

 $H_C \sim D^6$

For example: Coercive field H_C

Nanocristalline/nanostructured (d < 100 nm) materials can be produced starting from:

- <u>vapours</u> inert gas condensation, sputtering, plasma processing, CVD
- <u>liquid</u> electrodeposition, rapid solidification
- <u>solid</u> <u>mechanical alloying, mecanosynthese,</u> severe plastic deformation, spark erosion

Nanocristallin/nanostructured (d < 100 nm) materials can be produced starting from:

- <u>vapours</u> inert gas condensation, sputtering, plasma processing, CVD
- <u>liquid</u> electrodeposition, rapid solidification
- <u>solid</u> <u>mechanical alloying, mecanosynthese,</u> severe plastic deformation, spark erosion

What is mechanical alloying?

What is mechanical alloying?

Usually, we make alloys by melting together the components

Mechanical alloying **(MA)** involves <u>the synthesis</u> of materials in solid state by high-energy ball milling

What is mechanical alloying?

Usually, we make alloys by melting together the components

Elemental Powders Mixture

Milling in high energy ball mill

Mechanical alloying (MA) involves the synthesis of materials in solid state by high-energy ball milling

- Particles and grains are fractured
- Defects introduced in particles
 Temperature rise diffusion

What is mechanical alloying?

Usually, we make alloys by melting together the components

Elemental Powders Mixture

Milling in high energy ball mill

Mechanical alloying **(MA)** involves <u>the synthesis</u> of materials in solid state by high-energy ball milling

- Particles and grains are fractured
- Defects introduced in particles
- Temperature rise diffusion

What is mechanical alloying?

Usually, we make alloys by melting together the components

Elemental Powders Mixture

Milling in high energy ball mill

Mechanical alloying **(MA)** involves <u>the synthesis</u> of materials in solid state by high-energy ball milling

- Particles and grains are fractured
- Defects introduced in particles
- Temperature rise diffusion

► New phase

Ball

Ball

Mechanical alloying **(MA)** involves <u>the synthesis</u> of materials by high-energy ball milling - **PROCESS**

Mechanical milling (MM) refers to the process of milling pure metals or compounds without solid state reaction

 $\Omega \gg \omega \rightarrow \text{shock mode process (SMP)}$

 $\Omega \ll \omega \rightarrow$ friction mode process (FMP)

Mechanical alloying **(MA)** involves <u>the synthesis</u> of materials by high-energy ball milling - **PROCESS**

Mechanical milling **(MM)** refers to the process of milling pure metals or compounds without solid state reaction

 $\Omega \gg \omega \rightarrow \text{shock mode process (SMP)}$

 $\Omega \ll \omega \rightarrow$ friction mode process (FMP)

CLUJ-NAPOCA

Mechanical milling **(MM)** refers to the process of milling pure metals or compounds without solid state reaction

 $\Omega \gg \omega \rightarrow \text{shock mode process (SMP)}$

 $\Omega \ll \omega \rightarrow$ friction mode process (FMP)

TEHNICA CLUJ-NAPOCA

pulverisette 5 with 4 grinding bowl fasteners

V. Pop, O. Isnard and I. Chicinas, J. Alloys and Comp., **361** (2003), p.144-152.

Mechanical Alloying and Annealing Combining (MAAC) -What is this technique? Annealing the mixture milled MA Generally, synthesis of What's happening if we **STOP** the milling new material by MA process before the mechanical alloying finishing and then we make an **annealin**g? needs a long time It is `possible to improve (finishing) the solid state reaction of compound/alloy forming! **MAAC** – can reduce the synthesis time!

Reactive milling (RM) Mechanochemistry (MC) (dry or wet MM)

The MC consists of:

- a. reduction of the grain size below a certain value
- b. the subsequent chemical reaction towards the equilibrium phase composition under the milling conditions.

 $MO + R \rightarrow M + RO$ (it is applied for oxides, chlorides, sulphurs, etc.)

Mechanical Alloying in the Presence of Nanocrystalline Germs of the same Product

$$mA + nB = A_m B_n$$
 $(1 - x) \cdot (mA + nB) + x \cdot A_m B_n = A_m B_n$

Mechanical Alloying in the Presence of Nanocrystalline Germs of the same Product

Z. Sparchez, I. Chicinas, O. Isnard, V. Pop, F. Popa, J. Alloys and Compounds, 434-435 (2007) 485-488

Mechanical routes for producing of ferrites

Structural properties, phase composition

Partial reversibility during milling of the reaction:

 α -Fe₂O₃ + MeO \leftrightarrow MeFe₂O₄ \Longrightarrow

The particles contain several related Fe–Me–O phases

Milling in closed vial: α -Fe₂O₃ is reduced at Fe₃O₄

Milling in open vial: neither reduction of Fe³⁺ were detected

Particle size is generally reduced under 10 nm

G.F. Goya, H.R. Rechenberg, J. Phys: Condens. Mater., **10** (1998) 11829-11840 G.F. Goya, H.R. Rechenberg, J.Z. Jiang, J. Appl. Phys. **84** (1998) 1101-1108 F .Padella et al. Mater. Chem. Phys. **90** (2005) 172-177

Magnetic behaviour of mechanosyntesized ferrites

The magnetic properties are associated with

the canted spin configuration in small particles

the non-equilibrium cation redistribution resulting in a decrease of the number of magnetic $Fe^{3+}(A)-O^{2-}-Fe^{3+}(B)$ linkages

Magnetisation does not saturated even in an applied field of 9 T Ms decrease with milling time as a result of spin canting effect

The hysteresis loop is not symmetrical about the origin and is shifted to the left

 ΔH_{C} which increases with increasing the milling time

Coexistence of both ferrimagnetic and superparamagnetic phase

Mechanical routes used for producing SMA

Fe-Cu powders obtained by MA

Milling map of mechanically alloyed Fe-Cu system

B. Majumdar et al., J. Alloys Comp. **248**, 192 (1997)

Fe-Cu powders obtained by MA

Milling map of mechanically alloyed Fe-Cu system

B. Majumdar et al., J. Alloys Comp. **248**, 192 (1997)

Interesting magnetic properties

R.B. Schwarz, T.D. Shen, U. Harms, T. Lollo, J. Magn. Magn. Mater. **283**, 223 (2004).

Ni-Fe and Ni-Fe-X-(Y) systems

Why Ni-Fe and Ni-Fe-X-(Y) systems?

Ni-Fe and Ni-Fe-X-(Y) systems

Why Ni-Fe and Ni-Fe-X-(Y) systems?

Properties depending of milling conditions

It has been proved that the milling performed in the friction mode (FMP) leads to the formation of alloys exhibiting a soft magnetic behaviour. However, magnetisation is not affected by the mode used

R. Hamzaoui, O. Elkedim, E. Gaffet, J. Mater. Sci., **39** (2004) 5139

In high-energy ball milling process the fcc solid solution γ (Fe,Ni) in alloys Fe65Ni35 was formed after 36 hours, while in the low-energy milling process the Fe lines disappeared after 400 hours of milling.

E. Jartych, J.K. Żurawicz, D. Oleszak, M. Pękała, J. Magn. Magn. Mater. 208 (2000) 221

A strong decrease of the coercive field versus crystallite size appears especially for crystallite size smaller than 20 nm

R. Hamzaoui, O. Elkedim, N. Fenineche, E. Gaffet, J. Craven, Mater. Sci. Eng. A 360 (2003) 299-305

Mean grain size : 15 ± 2 nm , after 32 h milling

Mössbauer spectrometry

Ni₃Fe powders

I. Chicinas, V. Pop, O. Isnard, J.M. Le Breton and J. Juraszek, J. Alloys and Compounds 352 (2003), p. 34-40

I. Chicinas, V. Pop, O. Isnard, J.M. Le Breton and J. Juraszek, J. Alloys and Compounds 352 (2003), p. 34-40

Nanocrystalline soft magnetic powders from Fe-Ni-X-(Y) systems

FeNi3)xAg1-x, Ni50Al50-xFex, Fe49Ni46Mo5, Fe42Ni40B18, Ni-15%Fe-5%Mo and Ni-16%Fe-5%Mo (wt%), Ni-14%Fe-5%Cu-4%Mo and others

Supermalloy synthesis by MAAC:

- 8 hours milling
- different annealing conditions.

I. Chicinas, O. Isnard, V. Pop, J. Mater. Sci. **39** (2004), p. 5305-5308 O. Isnard, V. Pop, I. Chicinas, J. Magn. Magn. Mater. **290-291** (2005), p. 1535-1538.

Alliage 77Ni14Fe5Cu4Mo % massique

- 10h : seule la T_c de l'alliage est observée le traitement thermique homogénéise
- 4h : -Chauffage changement de pente au point A correspond à T_c de NiFeCuMo obtenu par broyage

-Formation progressive de l'alliage par chauffage (région B) Large domaine de composition

-Refroidisement une seule T_c détectée alliage formé dans le volume

SS : Mélange de départ T_c de Ni et Fe

F. Popa, O. Isnard, I. Chicinas, V. Pop, J. Magn. Magn. Mater., 316 (2007) e900–e903

European School of Magnetism, Cluj-Napoca, 9-18 Sept. 2007, 22

Analyse thermomagnétique

the mechanical alloying process occurs in two steps

an intermediate amorphous or poorly crystallined phase, (Ni,Fe)–Mo type.

O. Isnard, V. Pop, I. Chicinaş, J. Magn. Magn. Mater. **290-291** (2005) 1535 The high coercivity before 10 h of milling is attributed to strong pinning of domain walls of the interaction domains at the grain boundaries.

> Y. Shen, H.H. Hng, J.T. Oh, J. Alloys Comp. **379** (2003) 266-271.

The Ni, Fe and Mo maps on starting sample (0 hours milling) and on the 12 hours milled sample. It can observe the chemical homogeneity of the Supermalloy powders obtained by mechanical alloying and the particles morphology, too.

Methods to produce from the nanocrystalline powders a a nanocrystalline compact

FAPAS

Field activated pressure assisted sintering. Compared to a classical sintering process under pressure, a current is applied in order to assist the sintering. A current exhibiting a high intensity (up to 8,000 A) under low voltage (10 V) is applied.

E. Gaffet, G. Le Caër, Mechanical Processing for Nanomaterials, in Encyclopaedia of Nanoscience and Nanotechnology, vol.X, Ed. by H.S. Nalwa, American Sci. Publishers (2004).

Methods to produce from the nanocrystalline powders a a nanocrystalline compact

Spark plasma sintering

A process leading to bulk materials by a sintering step using pulse electric discharge. Due to the high intensity of the current, plasma may occur between the various powder grains.

V. Mamedov, Powder Metallurgy 2002 Vol. 45 No. 4, 322-327

Soft magnetic nanocrystalline composites

I. Chicinaş, O. Isnard, O. Geoffroy, V. Pop, J. Magn. Magn. Mater. 310 (2007), 2474-2476

Conclussions

The possibility of producing chemical transformations through mechanical energy has been extensively demonstrated in metallic as well as in oxide systems

The nanocrystalline/nanosized powders obtained by different mechanical routes exhibit very interesting properties, some from them different from those of bulk materials

Thank you for your attention!