Rare Earth-Transition Metal Compounds: Magnetism and Applications E.Burzo Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania

- 1. Phase Diagrams
- 2. Magnetic Properties

Exchange enhanced paramagnets

Induced transition moments, at H_{er}

Exchange interactions

- 3. Technical applications
- 3.1 Permanent magnets SmCo₅
 Sm(Co,Fe,Zr,Cu)_z
 Nd-Fe-B
 Nanocrystalline magnets
- 3.2 Magnetostrictive materials
- 3.3 Magnetocaloric materials
- 3.4 Hydrogen storage

RFe₂

1. Phase diagrams R-M, R = rare-earth, M = Mn, Fe, Co, Ni

 $r_R/r_M \cong$

•Formed by peritectic reaction

•At least one eutetic

•Number of compounds increase from M= Mn to M= Ni

Crystal structures

Fig.3

$T \leq 10 \text{ K} \qquad \chi = \chi_0 (1 + aT^2)$

T >T* Curie Weiss – type behaviour $\chi = C(T-\theta)^{-1}$; $\theta < 0$ Y(Co_{1-x}Ni_x)₂ <u>M_{eff}(Co) little dependent on composition</u>

$Y(Co_{1-x}Si_x)_2$ high decrease of $M_{eff}(Co)$

YCo_{3-x}Ni_xB₂

Band structure calculations: LMTO-ASA

$\overline{Y(Co_{1-x}Ni_x)}_2$

Fig.15

$Y(Co_{1-x}Si_x)_2$

Hybridization effect Co 3d-Si2p bands

double peak is broadened by p-d hybridization Co3d band shifted to lower energy

Compound	χ_{exp} at 1.7 K (emu/fu)·10 ³	χ_{calc} (emu/fu)·10 ³	a _{exp} (K ⁻²)·10 ⁻⁶	a _{calc} (K ⁻²)·10 ⁻⁶	
YCo ₂	1.90	1.80	1.2	1.1	
YCo _{1.6} Ni _{0.4}	2.50	2.80	1.30	1.5	

 $\chi = \chi_0 (1 + aT^2)$

Self consistent theory of spin fluctuations

Wave number dependent susceptibility, χ_q , for a nearly ferromagnetic alloy has a large enhancement for small q values

$$\chi_{q} = \frac{\overline{\chi}_{q}}{1 - J\overline{\chi}_{q}(\mu_{0}\mu_{B}^{2})}$$

Frequency of longitudinal spin fluctuations $\omega^* \propto \tau$ -lifetime of LSF

Low temperature

 $\omega^* < \frac{k_B T}{\hbar}$ (thermal fluctuations-transversal slow)

$$\chi = s\chi_{p} \left[1 + \frac{\pi^{2}}{6} \left(2\frac{\eta''}{\eta} - 1.2\frac{\eta'^{2}}{\eta^{2}} \right)_{E_{F}} s^{2}T^{2} \right]$$

Approximation for nonmagnetic state

 $\chi \propto T^2$ $\chi(T)^{\prime}$ as T $^{\prime}$

 η " > 0 (necessary condition, not sufficient)

High temperature

Average mean amplitude of LSF is temperature dependent

$$\langle S_{loc}^{2} \rangle = 3k_{B}T\sum_{q}\chi_{q}$$

$$S_{loc}$$
 / as T / up to T* (S_{loc})

 S_{loc} determined by charge neutrality condition

The system behaves as having local moments for temperatures $T > T^*$ where the frequency of spin fluctuations

$$\omega^* < \frac{k_B T}{\hbar}$$

Crossover between low T regime governed by spin fluctuations and high T classical regime

Gaussian distribution of spin fluctuations (Yamada)

$$\chi_{s}^{-1} = a_{1} - \alpha + \frac{5}{3}a_{3}S^{2} + \frac{35}{9}a_{5}S^{4} + \frac{35}{3}a_{7}S^{6} + \dots$$
(2)

where the mean square value of the fluctuating magnetization, S^2 , is given by:

$$\langle S^2 \rangle = \frac{3}{2\pi^2} k_B T q_m A^{-1} \left(1 - \frac{t g^{-1} \left(q_m \sqrt{A\chi} \right)}{q_m \sqrt{A\chi}} \right)$$
(3)

We denoted by a_1 , a_3 , a_5 and a_7 the expansion coefficients of the free energy with respect to the square of the magnetization density and α , q_m and A denote the molecular field coefficient, the cut-off wave vector of spin fluctuations and the exchange stiffness constant, respectively.

In the following we limit the series expansion development up to terms in S^2 . The explicit expressions for a_i coefficients were given as:

$$a_{1} = \frac{2}{g^{2} \mu_{B}^{2} N} \left\{ 1 + \frac{1}{6} (\pi k_{B} T)^{2} \left[\left(\frac{N'}{N} \right)^{2} - \frac{N''}{N} \right] + \dots \right]$$
(4)

$$a_{3} = \frac{g^{2}\mu_{B}^{2}}{2^{2}3!} a_{1}^{3} \left\{ 3\left(\frac{N'}{N}\right)^{2} - \frac{N''}{N} + \frac{1}{6}(\pi k_{B}T)^{2} \right. \\ \left. \left. \left[6\left(\frac{N'}{N}\right)^{4} - 13\frac{N''N'^{2}}{N^{3}} + \left(\frac{N''}{N}\right)^{2} + 7\left(\frac{N'''N'}{N^{2}}\right) - \frac{N''''}{N} \right] + \ldots \right\} \right\}$$
(5)

We denoted by N the state density at the Fermi level and N', N", N"' and N"" are their

derivatives of order to one up to four.

Composition	a	7.	q _m =π/aλ	A
	(Å)		(Å ⁻¹)	(cm ⁵ Oe ² /erg)10 ⁻¹²
1.0	7.206	2.02	0.215	5.5
0.8	7.200	1.93	0.225	5.4
0.6	7.196	1.85	0.235	5.3
0.4	7.190	1.29	0.338	5.2
0.2	7.183	1.30	0.336	5.1

Fig.19 $Y(Co_xNi_{1-x})_2$ 4 b10⁵(K²)

Quenching of spin fluctuations •external field: Beal-Monod, Brinkman-Engelsberg (theor. 1968) Ikeda et al: specific heat

(exp. 1984)

•internal field: Burzo-Lemaire

(exp.1992)

If the magnetic field is sufficiently large so that the Zeeman splitting energy of opposite spin states is comparable to, or larger than the characteristic spin fluctuation energy \Rightarrow paramagnons no longer have sufficient energy to flip spins and the inelastic spin flip scattering is quenched.

 $H_{quench} \propto T_{sf}$ Specific heat (10T) external field (Ikeda et al) γ reduced by 4 % YCo₂ 10 % LuCo₂

Magnetic measurements

RCo₂(R magnetic) M_{eff} T_c / $M_{eff} = a + bH_{exch}^{-1}$ b = 1.7 · 10⁻² μ_BT For ΔH_{exch} = 10 T ⇒ ΔM_{eff} decrease by 6 %

 $LaNi_{5-x}Cu_x; LaNi_{5-x}Al_x$

CuCaCu₅ - type
$$x \le 2$$
A1CaCu₅ - type $x < 2$ HoNiGa $x > 2$

Induced transition metal moment 2.2 $(Gd_xY_{1-x})Co_2$ Lemaire, 1966 Critical field for appearance a magnetic moments

 $\langle \mathbf{M}_{\mathbf{Co}} \rangle = \sum \mathbf{M}_{\mathbf{Co}}(\mathbf{x}) \mathbf{P}_{\mathbf{n}}(\mathbf{x})$

 $P_{x}(x) = \frac{6! x^{x} (1-x)^{-x}}{1-x}$

0.2

(6-n)!n!

1.0 \$

0.8

0.6

0.4

0.2

M(x)/M(1)-

 $J_{\rm CoCo} = {\bf 3.3}{\bf \cdot}10^{-22}~J$

0.6

0.4

Band structures

 $H_C \cong 70 \ T$

0.8

'X

Fig.28

critical value of exchange interactions

 $n \ge 3 NN$

3m site

GdCo₂
$$M_{Co} = 1.20 \mu_B \quad GdNi_2 \quad M_{NI} = 0.12 \mu_B$$

GdCoNi $M_{Co} = 1.12 \mu_B \quad M_{NI} = 0.17 \mu_B$

Field dependence of transition metal moment

 $\Delta M_{Co} = V_{Co} \Delta H_{exch} \qquad V_{Co} = (3 \cdot 10^6)^{-1} \mu_B / Oe$ High field measurements, Amsterdam: confirmed V_{Co} value $\Delta M_{Fe} = V_{Fe} \Delta H_{exch} \qquad V_{Fe} = (18 \cdot 10^6)^{-1} \mu_B / Oe$ Confirmed by high field measurements (Amsterdam) – cobalt compounds

$\begin{array}{l} 0 \ \mathrm{K} \\ \mathrm{M}_{\mathrm{Ni}} \cong 0.20 \ \mathrm{\mu}_{\mathrm{B}} \\ \mathrm{Ni} \cong 0 \end{array}$

Fig.32

Fig.33

 $M_{3d} \propto G \qquad G = (g_J - 1)^2 J(J+1)$ $M_{5d} = M_{5d}(0) + \alpha G$ $\alpha G \text{ intra-atomic 4f-5d exchange}$ $M_{5d}(0) \text{ short range exchange interaction}$

RM ₅ M=Co, Ni	
$M_{5d} = M_{5d}(0) + \alpha'G$	$\alpha' = 1.4 \cdot 10^{-2} \mu_{\rm B}$
$M_{5d}(0) = 0.32$ Co	
=0.08 Ni	
$M_{3d} = M_{3d}(0) + \beta'G$	
$M_{5d}(0)/M_{3d}(0)=0.045$ $RCo_{4}B, RM_{5}$ $H = \sum_{i=1}^{2} J_{3d_{i}-5d} S_{5d}(0) \sum_{n} S_{3d_{i},n} + J_{5d-5d} S_{5d} \sum_{i=1}^{2} S_{5d_{i}}$ \bigcup $\Delta M_{5d}(0) \propto H_{exch} \propto \sum_{i} n_{i} M_{i_{c}}$	$= 1.6 \cdot 10^{-2} \mu_{B} \text{ Ni}$ $\int_{0}^{30} \int_{0}^{0} \int_$

GdNi₅

 $J_{2c-3g}(1) = 26 \text{ K}$

$$J_{ij} = \sum_{\{m\}} I^{i}_{mm'} \chi^{ij}_{mm'm'm''} I^{j}_{m''m''}$$

where the spin dependent potentials, I^{i} , are expressed in terms of the single particle potential $V_{mm'}$: $I_{mm'}^{i} = V_{mm'}^{i\uparrow} - V_{mm'}^{i\downarrow}$, while the effective inter-sublattice susceptibilities, χ^{ij} , were defined in terms of the LDA eigenfunctions as

$$\chi_{mm'm'm''}^{ij} = \sum_{knn'} \frac{n_{nk\uparrow} - n_{n'k\downarrow}}{\varepsilon_{nk\uparrow} - \varepsilon_{n'k\downarrow}} \Psi_{nk\uparrow}^{ilm^*} \Psi_{nk\uparrow}^{ilm'} \Psi_{n'k\downarrow}^{ilm'} \Psi_{nk\downarrow}^{jlm^*}.$$

We denoted by n_i the orbital occupancy of d electrons, l the orbital quantum number and m the magnetic quantum number.

Rhodes-Wohlfart curve

Both longitudinal and transverse components of the local spin fluctuations.

Relative contributions given by $r = S_p/S_o$ between the number of spins determined from effective moments $\mu_{eff} = g\sqrt{S_p(S_p+1)}$ and that obtained from saturation data $\mu_s = gS_o$

Mechanisms:

•increase of saturation Co and Ni moments as exchange fields increase

•gradual quenching of spin fluctuations by internal field, diminishing the effective moments

3. Technical Applications

- 3.1 Permanent Magnets:
- Cobalt based magnets

a) RCo_5 , R_2Co_{17} - based magnets: light rare – earths

 $\begin{array}{ccc} \text{RCo}_5 & \text{T}_\text{C} \cong 1000 \text{ K} \\ \text{RCo}_5 & \text{T}_\text{C} \cong 1150 \text{ K} \end{array}$

 R_2Co_{17} $T_C \cong 1150$ K

R = Sm high uniaxial anisotropy

Expensive: natural abundance of Sm, Co

(BH)max $\cong 200 \text{ kJ/m}^3$ $\cong 240 \text{ kJ/m}^3$

• iron based: Nd-Fe-B

- low Curie points, T_C≅580 K
- high energy product at RT

 $(BH)_{max} \cong 420 \text{ kJ/m}^3$

- high decrease of energy product with T T<100 °C

0

Nanocrystalline magnets Isotropic microcrystalline Nd-Fe-B ribbons $B_r \cong B_s/2$ Alloys with low Nd content grain refinement into nanocyrstalline regime increase B_r •High boron content $Nd_{4.5}Fe_{77}B_{18.5}:Ex$ $Nd_2Fe_{14}B + Fe_3B + \alpha - Fe$ •Low boron content $Nd_6Fe_{88}B_6:Ex$ $Nd_{2}Fe_{14}B+\alpha$ -Fe Mean grain sizes $Nd_{2}Fe_{14}B (< 30 \text{ nm})$ Soft magnetic phase (< 15 nm) Exchange coupling reduces the resistance to reversal magnetization but not lead to: - collapse of $H_{\rm C}$ - deteriorated (BH) loop

Condition: dimension of soft magnetic phase < exchange distance for the phase

3.2 Magnetostrictive materials

Rare-Earths (R)

• interesting properties for technical applications

•low Curie temperatures $T_C \le 300 \text{ K}$ $\lambda^{\epsilon,2}$

- 0.0.10 - 10

4.2 K **8.8**· 10⁻³ Dy

2.5·10⁻³Ho

•cannot be used for devices working at RT

Rare-Earth-Transition Metal Compounds: RM,

On the support of exchange interactions the R useful properties translated at higher 1

R-Fe compounds

Fig.53

TbFe₂ high anisotropy: high magnetostriction Minimizing magnetic anisotropy but maintaining a large magnetostriction

- opposite sign of anisotropy (anisotropy compensating system)

3.3. Magnetocaloric effects

The isothermal magnetic entropy changes, ΔS_M (T, ΔH)

$$\Delta S_{M}(T, \Delta H) = \int^{AH} \left(\frac{\partial M}{\partial T}\right)_{H} dH$$

Discrete fields and temperature intervals

$$\Delta S_{M} = \sum_{T_{i+\bar{i}}-T_{i}} (M_{i+\bar{i}} - M_{i})_{H} \Delta H$$

From magnetic measurements ΔS_M were evaluated.

Fig.56

Fig.57

3.4 Hydrogen in Metals

LaNi₅ shows an absorption plateau pressure of few bars at RT. There is a complete revesibility between formation and decomposition with a hysteresis between the corresponding equilibrium pressure. An α -phase s.s. precedes β -LaNi₅H₆ hydride. The system requires an activation stage which involves decrepitation into small particles.

Thank you very much for your attentions.