

materials for magnetic refrigeration

Ekkes Brück

Introduction

Magnetic cooling

Giant magnetocaloric effect

Outlook

Review: E. Brück, Magnetic refrigeration near room temperature, Handbook of magnetic materials Vol 17 chapt. 4 (2007) ed. K.H.J. Buschow

Basic magnetocalorics

Two energy reservoirs spins → lattice

spins \leftarrow lattice

Domain movement

Magnetic cooling: Debye and Giauque 1926

LETTERS TO THE EDITOR

Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd₂(SO₄)₃·8H₂O

We have recently carried out some preliminary experiments on the adiabatic demagnetization of $Gd_2(SO_4)_3$ $\cdot 8H_2O$ at the temperatures of liquid helium. As previously predicted by one of us, a large fractional lowering of the absolute temperature was obtained.

768

An iron-free solenoid producing a field of about 8000 gauss was used for all the measurements. The amount of $Gd_2(SO_4)_3 \cdot 8H_2O$ was 61 g. The observations were checked by many repetitions of the cooling. The temperatures were measured by means of the inductance of a coil surrounding the gadolinium sulfate. The coil was immersed in liquid helium and isolated from the gadolinium by means of an evacuated space. The thermometer was in excellent agreement with the temperature of liquid helium as indicated by its vapor pressure down to $1.5^{\circ}K$.

On March 19, starting at a temperature of about 3.4°K, the material cooled to 0.53°K. On April 8, starting at about 2°, a temperature of 0.34°K was reached. On

April 9, starting at abou was attained.

It is apparent that it lower temperatures, espec zations are utilized.

Department of Chemist University of Californ Berkeley, California April 12, 1933.

0.25°K n much agnetigall

61g Gd₂(SO₄)₃⋅8H₂O, ΔB=0.8T, 1.5K →0.25K

Nobel prize 1949

Zeeman effect for state with total moment J

- Ground state J is 2J+1 times degenerated: J_z=-J, -J+1, ... J
- Splits in magnetic field into sublevels

$$H_{P} = -\mathbf{\mu} \cdot \mathbf{B} = -\mu_{z} \cdot B$$

$$E = \langle H_P \rangle = g_{Lande} \mu_B J_z B_z$$

$$g_{Lande} = \frac{3}{2} - \frac{L(L+1) - S(S+1)}{2J(J+1)}$$

- Spectroscopic splitting factor g_{Landee} depends on L, S, and J
- Splitting at B=1 Tesla in the order of meV
- Atom behaves as if it has effective moment: $\mu_{eff} = -g_L \mu_B J$

Statistical physics description

When a system, in contact with a heat bath at temperature **T** can be in a state with energy **E**, the probability for this is given by the Gibbs rule:

$$p(E) = \frac{e^{-\beta E}}{Z}, \qquad \beta = \frac{1}{kT},$$

where k is Boltzmann's constant. **Z** is called the partition sum,

$$Z = \sum_{E} e^{-\beta E} -$$

Z is needed to have the proper normalization

$$\sum_E p(E) = 1.$$

The strength of statistical physics is that by calculating **Z** a lot of information about the system can be derived.

The Helmholtz free energy is:

$$F = U - TS = -kT\log Z$$

while the Gibbs free energy is:

$$G = U - TS + pV$$

Thermodynamic relations:

Differential of Gibbs free energy

$$S(T,B,p) = -\left(\frac{\partial G}{\partial T}\right)_{B,p}, M(T,B,p) = -\left(\frac{\partial G}{\partial B}\right)_{T,p}, V(T,B,p) = -\left(\frac{\partial G}{\partial p}\right)_{T,B}$$

Entropy

Magnetization

Volume

Differential of entropy $dS = \left(\frac{\partial S}{\partial T}\right)_{B,\rho} dT + \left(\frac{\partial S}{\partial B}\right)_{T,\rho} dB + \left(\frac{\partial S}{\partial \rho}\right)_{T,B} dp$

$$dS = \frac{C_{B,p}}{T} dT + \left(\frac{\partial S}{\partial B}\right)_{T,p} dB - \alpha V dp$$

From definition of specific heat

$$S(T,B) = S_0 + \int_0^T \frac{c_p(T',B)}{T'} dT'$$

S₀ can be set to zero because it is not depending on field

$$\Delta S(T, \Delta B) = \int_{0}^{T} \frac{c_{p}(T', B_{f}) - c_{p}(T', B_{i})}{T'} dT$$
Easy measurable

Continuous phase transition

An the absence of an external field, H=0, the system with exchange interaction J/k=1may spontaneously order.

First order phase transition

If interactions with quartet play a role this may result in local minima in the free energy.

$$F = -\frac{1}{2}NJm^4 - NHm + 1$$

MCE in gadolinium

Magnetic entropy change (green left scale) and

Temperature change (red right scale)

Derived from specific heat data. (Gschneidner et al)

	T _C (K)	-∆S _M (mJ/cm ³ K)		ΔT _{ad} (K)		Dens. (g/cm3)
Compound		0-2T	0-5T	0-2T	0-5T	
Gd ₄ Bi ₃	332	15	27	2.2	4.2	10.073
Gd ₄ (Bi _{2.25} Sb _{0.75})	308	27	47	3.7	6.8	9.679
$\mathrm{Gd}_4(\mathrm{Bi}_{1.5}\mathrm{Sb}_{1.5})$	289	24	47	3.1	6.5	9.259
Gd ₄ (Bi _{0.75} Sb _{2.25})	273	26	49	3.2	6.4	8.834
Gd_4Sb_3	265	29	55	3.2	6.4	8.414
Gd ₂ In	194	18.5	37	2.0	4.4	8.316
Gd ₂ In	~50 ^a	-12	-4	-0.7	-0.2	8.316

^aTemperature at which Δ SM has the largest positive value and Δ Tad has largest negative MCE value

Ilyn M I, Tishin A M, Gschneidner K A Jr, Pecharsky V K and Pecharsky A O 2001 Cryocoolers 11 ed R G Ross Jr (New York: Kluwer Academic/Plenum) p 457

Niu X J, Gschneidner K A Jr, Pecharsky A O and Pecharsky V K 2001 J. Magn. Magn. Mater. 234 193

The magnetocaloric properties of selected binary intermetallic compounds

	Т _с (К)	-∆S _M (mJ/cm ³ K)		ΔT _{ad} (K)		Density (g/cm ³)
Comp.	-	0-2T	0-5T	0-2T	0-5T	
Nd ₂ Fe ₁₇	325	25	46	1.9	4.0	7.797
Gd ₇ Pd ₃	323	22	57	3.0	8.5	8.707
TmAg	~12 ^b	11	74 ^c	0.8	4.2 ^c	10.169
TmAg	~ 7 ^a	-26	-55 ^c	-0.4	-0.9 ^c	10.169
TmCu	~10 ^b	25	118 ^c	0.6	3.6 ^c	9.692
TmCu	6.7 ^d	-68	-131 ^c	-0.4	-1.8 ^c	9.692

^aTemperature at which Δ SM has the largest positive value and ΔT_{ad} has largest negative MCE value ^bMaximum in MCE (no magnetic ordering observed at this temperature) ^cInterpolated ^dNéel temperature

Dan'kov S Yu, Ivtchenko V V, Tishin A M, Gschneidner K A Jr and Pecharsky V K 2000 Adv. Cryog. Engin. 46 397 Canepa F, Napoletano M and Cirafici S 2002 Intermetallics 10 731

Rawat R and Das I 2001 J. Phys.: Condens. Matter 13 L379

	T _C a	(m.	-∆S _M J/cm³K)		∆T _{ad} (K)	Dens. (g/cm ³)
Compound		0-2T	0-5T	0-2T	0-5T	
GdCoAl	100	37	79			7.575
TbCoAl	70	41	80			7.649
DyCoAl	37	70	125			7.619
GdPd ₂ Si	17	42	142	3.2	8.6	9.358
HoCoAl	10	100	171			7.961

Zhang X X, Wang F W and Wen G H 2001 J. Phys.: Condens. Matter 13 L747

Rules for magnetocaloric effect

Larger moment \Rightarrow larger $\Delta S \& \Delta T$

Lower temperature \Rightarrow larger Δ S & Δ T

Lower thermal agitation Lower heat capacity

No CFCs, easy scalable, high efficiency, permanent magnets

Chubu and Toshiba Refrigerator 2003

Gd metal Rotating magnet 0.76 T Cooling power 60 W T span 20 K

Other AMR prototypes

XX

Name	AMR Type	AMR Material	Magnetic Field (T)	Remarks	Ref.
Ames Laboratory/ Astronautics	reciprocatin g	Gd spheres	5 (S)	СОР ^т 10	(Zimm et al. 1998)
Barcelona	rotary	Gd foil	0.3 (P)	Olive oil	(Bohigas et al. 2000)
University of Victoria	reciprocatin g	Gd , Gd _{.74} Tb _{.26}	2(S)	epoxy bonded pucks	(Richard et al. 2004)
Lab. Electric Grenoble	reciprocatin g	Gd foil	0.8 (P)	COP ^R 2.2	(Clot et al. 2003)
Astronautics	rotary	Gd, Gd-Er, spheres LaFeSiH particles	1.5 (P)	4 Hz	(Zimm et al. 2006)
Natl Inst. Appl. Sci. / Cooltech	rotary	Gd plates	1 (P)	Torque 10 Nm	(Vasile et al. 2006)
Xian Jiaotong Univ.	reciprocatin g	Gd spheres; Gd ₅ (Si,Ge) ₄ pwdr.	2.18 (E)	СОР ^т 25	(Gao et al. 2006)
University of Victoria	reciprocatin g	$\begin{array}{c} Gd \ , \ Gd \ _{74}Tb \ _{26} \\ Gd \ _{85}Er \ _{15} \end{array}$	2.0 (S)	ΔT 50K	(Rowe et al. 2006)

Replace Gd with material with large MCE

1990 FeRh (Nikitin et al.) 1997 $Gd_5Si_2Ge_2$ ((Percharsky & Gschneidner Jr.) 1998 RCo₂ (Foldeaki et al.) 2000-2002 La(Fe,Si)₁₃ (Zhang et al., Fukamichi et al.) 2001 MnAs_{1-x}Sb_x (Wada et al.) 2002 MnFe(P,As) (Tegus et al.) 2003 Co (S_{1-x}Se_x)₂ (Yamada & Goto)

Giant magnetocaloric effect in Gd₅Ge₂Si₂

Magnetically dilute yet higher effect double transition?

Pecharsky & Gschneidner PRL 78 (1997) 4494

Crystal was grown in a mirror furnace by means of traveling solvent floating zone method

D=4mm Sphere was cut by spark erosion from as grown rod

Unusual behavior

Extraordinary magnetic behavior: first-order character of the paramagnetic-ferromagnetic transition.

Unusual behavior

The high temperature paramagnetic monoclinic phase transforms to the low temperature ferromagnetic orthorhombic phase. The low temperature phase has a higher symmetry than the high temperature, which is the opposite of what is normally observed for other polymorphic systems.

Crystallographic data comes from W Choe PRL v84, n20, p4617, $200\hat{0}^{1}$

Unusual behavior

Volume decreases when cooling through the transition, i.e., the cell volume in the low-temperature ferromagnetic phase is smaller ($\Delta v > 0.4\%$) than in the high-temperature paramagnetic one. This is in contrast with the general physical picture of the magnetovolume effects which are transitions from a low-volume low-moment to a high-volume high-moment state.

V. K. Pecharsky and K. A. Gschneidner, Jr., J. Alloys Compd. 260, 98-106 (1997) ³⁴

Summary Gd₅Ge₂Si₂

Magnetically driven 1st order structural transition below 270 K.

Gd₅Ge₂Si₂ monoclinic above magnetic transition orthorhombic below.

Anisotropy on X-tals. Exceptional coupling of lattice with s-state 4f-magnetism.

Hysteretic transition: locking of structure? Mechanical stability?

Transition-metal compounds

other alternative

High abundance (low price)

Intermediate magnetic moment (moderate MC effect)

Strong coupling to lattice (Simultaneous magnetic and structural transitions or metamagnetism)

La(Fe,Si)₁₃ compound

Cubic CaZn₁₃ type of structure stabilized by addition of 10% Si (Kripyakewich et al. 1968) Invar type of behavior and unusual magnetic transition (Palstra et al 1983) Difficult to obtain single phase.

Summary La(Fe,Si)₁₃

Field driven 1st order metamagnetic transition around 200 K.

La(Fe,Si)₁₃ cubic above magnetic transition

cubic below

volume change 1.5%.

Low Tc can be increased by addition of Cobalt or Hydrogen.

Hysteretic transition: powder after hydrogenation? Mechanical stability?

P/As

Fe

Bacmann, JMMM 1994

Starting Fe₂P, Mn₂As₃, Mn & P

mechanical alloying

sintering 1000°C

annealing 800°C

Magnetization process near Tc

Field induced transition with small hysteresis

47

Concentration dependence of T_C for MnFeP_{1-x}As_x

Somewhat higher T_C compared with lit.

T (K)

Almost linear concentration dependence.

Summary MnFe(P,As)

Field driven 1st order magnetoelastic transition 150 K < Tc < 450 K.

MnFe(P,As) hexagonal above magnetic transition hexagonal below.

Hardly any volume change(0.1 %) but change of c/a.

Hysteretic transition: Hysteresis depends on grain size? High chemical stability allows As content?

Conclusions

- First order magnetic transition common to the different systems!
- Structural transition may cause extra hysteresis.
- Control of hysteresis very important.
- Evaluation of entropy change needs care.
- Fe and Mn based systems with much lower materials costs.
- Relevant T range covered by La(Fe,Si)₁₃H_x and MnFe(P,As,Si,Ge).
- Sample preparation simplest for MnFe(P,As) with As replaced by other element.

Outlook

Cooltech current N°4 Prototype

Registered Patents, Brand and Models

IMPORTANT issues:

1 – The AMRR Cycle (Active Magnetic Regenerator Refrigeration): with Gd inserts as cross-flow plate heat-exchangers.

- **2** Amplification of ΔT by accumulation of cycles.
- 3 Reduction in torque (10 Nm) obtained by ensuring a ferromagnetic continuity on the disc.
 4 Very low level of noise and vibrations (< 25 dB)
- **5** Creation of magnetic fields of 0.7 to 2 Tesla with standard permanent magnets.

6 - Low thermal losses, completely separate "hot" and "cold" fluid circuits.

Availability							
	Limiting ingredient	Estimated availability	Total availability of MC material				
Gd metal	Gd	1000	1000t				
Gadolinium Silicon alloys $Gd_4(Si_{1-x}Ge_x)_5$	Ge	WW prod=90t, avail 10t ?	140t				
Manganese alloys Mn(As _{1-x} Sb _x) MnFe(P _{1-x} As _x)	none	none	No limitation for an industrial production				
Lathanum alloys La(Fe _{13-x} M _x)	La	4000	22000t				
Manganites LaMnO ₃	La	4000	7000t				
Ni _{0.501} Mn _{0.227} Ga _{0.258}	Ga	WW prod=90t, avail 10t ?	60t?				

