

1 bit = many domains

Information storage driven by domain wall shifts

1 bit = 1 magnetic nanoobject

Single-domain needed Single easy axis preferred

Hurdle: superparamagnetism

Preparative methods for thin films

- Thermal evaporation
- Sputtering
- Chemical vapor deposition (CVD)
- Pulsed laser deposition (PLD)
- Molecular beam epitaxy (MBE) For a review of physical vapor deposition techniques:
- •

Reichelt, *Thin Solid Films* **1990**, *191*, 91-126

Deposition rate limited by mass transfer of "precursor" from the gas phase

⇒ Techniques only applicable to **flat substrates**

High-density data storage: requirements

Requirements

Approaches

- *a.* Small lateral size⇒ high density
- b. Ferromagnetism along preferred axis
 ⇒ information storage
- C. 2D organization ⇒ information retrieval
- **d.** Controlled geometry and magnetism
 - response foreseeable and optimizable

A. Pseudo-1D magnetic objects (wires, tubes)
 ⇒ a, b

B. Lithography rightarrow C

- C. Ordered porous templates ⇒ A, c, d
- **E.** Atomic layer deposition $\Rightarrow A d$

Shape anisotropy

- Challenge for small objects: superparamagnetism (no ordering because not enough material)
- Solution: set a single easy magnetization axis ⇒ KV >> kT
- K: magnetic anisotropy; V: volume; k: Boltzmann's constant; T: temperature
 Option 1: USE magnetocrystalline anisotropy

... difficulties:control of crystallinity and orientation, limitation in terms of materials

 Option 2: pseudo-1D-objects

Α

1**D**

Magnetic phase diagram for a cube with uniaxial anisotropy Ross, Annu. Rev. Mater. Res. 2001, 31, 203-235

Types of pseudo-1D objects

Rods, pillars Limited shape anisotropy

Co pillars: Farhoud, J. Vac. Sci. Tech. B 1999, 17,

Tubes Few preparative methods Co / polymer tubes: Nielsch, *J. Appl. Phys.* **2005**, *98*, 034318

Wires Most investigated Ni wires: Whitney, *Science* **1993**, *261*, 1316-131

Circles, disks, ellipses > 1 bit per object ?

Au rings: Ji, Adv. Mat. 2006, 18, 2593-2596

^BE-beam lithography, focused ion beam (FIB)

- Principle: exposure of a sensitive layer to a tightly focused beam... its chemical identity changes upon exposure
- Electron beam: electron microscopes provide a convenient source
- FIB: ions are extracted under a high voltage from a liquid Ga droplet wetting a W tip, then mass-selected, collimated and focused
- Advantage: versatility large variety of structures can be designed in a computer and created just by proper control of the beam deflector
- Disadvantage: not a parallel method every object must be prepared individually

Lithographic methods for magnetic nanostructures: Martin, *J. Magn. Magn Mat.* **2003**, *256*, 449-501

Interference lithography

• Interference btw two beams of monochromatic light creates a perfectly ordered periodic line pattern in photoresist:

B

litho

Farhoud, *J. Vac. Sci. Tech. B* **1999**, *17*, 3182-3185

- Double exposure yields circular or elliptical objects
- Advantage: massively parallel

Direct pattern transfer: etching

 Reactive ion etching (RIE): plasma in a gas creates ions that are both highly reactive and (somewhat) specific

B

litho

- CHF₃ for SiO₂
 O₂ for organic materials
 Cl₂ for Al₂O₃
 (Ar non-specific: ion milling)
- The plasma is "above"
 - ⇒ etching occurs vertically

Ross, Annu. Rev. Mater. Res. 2001, 31, 203-235

Indirect pattern transfer: mask

 Patterned layer used as a mask for the deposition of magnetic material (sputtering, thermal evaporation, ...)

B

litho

- Patterned layer then lifted off
- Alternative: patterned layer is separated, then laid onto a photoresist and used as a shadow mask

Ross, Annu. Rev. Mater. Res. 2001, 31, 203-235

Indirect pattern transfer: imprint

• Mechanical indentation of substrate with patterned

B

litho

• Soft lithography (using PDMS stamps) more practical see Xia, Annu. Rev. Mater. Sci. 1998, 28, 153-184; and Angew. Chem. Int. Ed. 1998, 37, 551-575

Lithographic structures

Ni pillars of two different diameters (H // z) Ross, *Annu. Rev. Mater. Res.* **2001**, *31*, 203-235

Limitation: aspect ratios accessible in "vertical" geometry

B *litho*

Porous materials as templates

- An ordered array of vertical pores is the "**negative**" of an array of 1D objects.
- If the pore array is **tunable in geometry**, then the wires / tubes obtained from it are as well.
- The preparation of the porous material may be specific to a certain material system; but if the "filling method" is general, the quality of the template is transferred to the 1D objects in general

⇒ need to optimize geometric control once and for all !

С

template

C template

Ion track-etch filters

• **Commercially available filters** with pores of controlled diameter: from bombardment with nuclear fission fragments then chemical etch

Martin, Science **1994**, 266, 1961-1966

 Advantages: variety of pore diameters (<10 nm) available

pore diameter homogeneous

 Disadvantages: pores randomly scattered pores not parallel

c Phase-separated block copolymers

 Phase separation may lead to regular pattern; selective chemical etching then furnishes a porous template or a mask

Park, *Science* **1997**, *276*, 1401-1404

A, C: copolymer polystyrene / polybutadiene (PB removed by ozonation);

B, D: etched pattern in Si₃N₄

Macroporous silicon

- Electrochemical oxidation of Si in HF solution under irradiation induces the formation and growth of pores
- Pores are disordered unless lithographically pre-

Grüning, *Appl. Phys. Lett.* **1996**, *6*, 747-749

Lehmann, *J. Electrochem. Soc.* **1993**, *140*, 2836-2843

Limitation: pores rather large (>0.5 μm)

• Electrochemical oxidation of AI in acidic solution induces the formation and growth of pores in AI₂O₃.

 $AI \rightarrow AI^{3+} + 3e^{-} \qquad 2AI^{3+} + 3H_2O \rightarrow AI_2O_3 + 6$ H^+

 $2 H^+ + 2 e^- \rightarrow H_2$ $Al_2O_3 + 6 H_2X \rightarrow AlX_3^{3-} + 3 H_2O$

 Ordering depends on balance btw electron transfer processes and diffusion of water through the alumina barrier

Scale bars: 100 nm

Chemistry of electrodeposition electrodep

D

- Electroplating solution: for example $MX_n / H_vA / H_2O$ Mⁿ⁺: metal ion; X⁻: Cl⁻, $\frac{1}{2}$ SO₄²⁻, CN⁻, ...; H_vA: H₃BO₃, ...
- Mⁿ⁺ reduced at the cathode (working electrode, W): $M^{n+} + n e^{-} \rightarrow M^{0}$
- At the anode (auxiliary electrode, A): something must be oxidized (electrical circuit is closed, electrons cannot be created or destroyed)...

 $2 H_2O - 4 e^- \rightarrow O_2 + 4 H^+$

- HA and MX_n make the solution electrically conductive (charges cannot accumulate)
- To be avoided (or minimized): reduction of protons... $2 H^+ + 2 e^- \rightarrow H_2$

^D electrodep Thermodynamics of electrodeposition

• Some elements are harder to reduce than others...

$Mg^{2+} + H_2$	\rightarrow	Mg + 2 H+	-2.4 V
$Fe^{2+} + H_2$	→	Fe + 2 H+	-0.4 V
$Pd^{2+} + H_2$	\rightarrow	Pd + 2 H+	+0.8 V

- List of thermodynamic properties of redox couples: table of standard reduction potentials
- Arbitrary reference of the reduction potentials: H⁺ / H₂ couple (could have been free e⁻ in vacuum)
- **Practical aspects** influencing potentials necessary for electrodeposition: concentrations, transport phenomena, surface tension effects

D Technique of electrodeposition

• Deposition modes:

DC galvanostatic (no control on thermodynamics) **DC potentiostatic** (thermodynamics set by turning a button)

pulsed (better kinetic control: reactant delivery to electrode) \neg

- Proper setup: with reference electrode (R)
 ... V applied btw R and W
 ... i measured btw A and W
- Two-electrode setup (no R) often used in practice

D Electrodeposited nickel nanowires

Nielsch, Appl. Phys. Lett. 2001, 79, 1360-1362

- Porous anodic alumina as template
- Au layer sputtered on one side as electrode
- DC or pulsed electrodeposition
- Pores fill up with Ni from electrode ... growth of Ni wires
- Advantages:

wires oriented diameter tunchlo

SEM top view

Segmented wires

- Electrodeposition in porous template with alternation btw several different solutions: segments of several different metals
- Length of segments defined by total time spent (total charge passed) in each solution

Optical and electron micrographs of a (nonmagnetic) Ag / Au segmented wire Nicewarner-Peña, *Science* **2001**, *294*, 137-141

Atomic layer deposition: idea

Chemical vapor deposition (CVD):

• thermal decomposition on the substrate

Ε

AID

• diffusion rate-limiting... shadowing

Atomic layer deposition (ALD):

- Imiting chemical reaction with excess reactant
- layer-by-layer growth with
 arbitrary substrate geometry

- Two alternatively pulsed precursors no reaction in the gas phase
- Precursors thermally stable but reactive towards each other specific chemical reaction, no decomposition
- Each precursor pulse = one chemisorbed monolayer no matter excess of precursor... **conformal coating**
- Thickness proportional to number of ALD cycles

^E Magnetic materials by ALD

• ALD reactions:

- Reduction of Fe₂O₃, CoO and NiO to Fe₃O₄, Co and Ni by H₂.
- More granular material obtained at higher temperature and if reduction causes a large volume change

Iron oxide nanotubes by ALD

Bachmann, J. Am. Chem. Soc. 2007, 129, 9554-9555

Ε

ALD

11 nm Fe_2O_3 in Al_2O_3 $Fe_2(O^tBu)_6 + H_2O @$ 140°C $D_p = 50$ nm, $D_{int} = 105$

42 nm **Fe₃O₄**, isolated Zr tube Fe₂(O^tBu)₆ + H₂O @ 140℃ D D_p = 160 nm, D_{int} = 460 nr**B**cale bars: 100 nm

ZrO₂ / Fe₂O₃ / ZrO₂ in Al₂O₃ Fe₂(O^tBu)₆ + H₂O @ 140°C D_p = 160 nm, D_{int} = 460 nm

^E_{ALD}Two distinct magnetization reversal modes

Heterostructures by combining techniques

• Core / shell wires:

• Wires modulated in diameter:

Conclusions

