

• what can we learn from scattering experiments when studying magnetism ?

• which probe to use to solve a given problem ? neutrons or synchrotron x-rays ?

 problems to be solved : magnetic structures determinations observation of magnetic order origin of magnetic moments complementary use n+x

T.J. Sato et al. 1998 ILL

Magnetic X-rays versus Neutrons

- magnetism basic and applied sciences
- several methods of investigation bulk measurements ordering temperature type of ordering anisotropy microscopic measurements scattering probes local probes (muons, NMR) microscopies

PUG LLN team

 magnetic structures arrangement of magnetic moments in solids

• magnetic couplings : magnetic excitations local anisotropy

• origin of magnetic moments: electronic shells form factors

origin of magnetisation d, f, p

scattering versus real-space/real-time

real space images

comparison averaging / collecting data

 real time (time-resolved) methods ? relevant time scales

> electronic levels : < 10⁻¹⁸ sec electron-nuclei interactions : 10⁻¹⁵ sec fast chemical reactions : 10⁻¹²-10⁻¹⁵ sec "magnetic" excitations : 10⁻¹²-10⁻¹⁴ sec spin-flip : 10⁻¹² sec domain rotations : around 10⁻⁹ sec

Time-resolved experiments

- ultra-fast time-resolved experiments : < 10⁻¹² sec waiting for lasers!
- fast time-resolved experiments : 10⁻⁹-10⁻¹⁰ sec stroboscopic experiments (pump-probe) white-beam x-rays experiments - imaging
- medium time-resolution : 10⁻³-10⁻⁶ sec photon time-correlation - coherent x-rays
- slow dynamics kinetics : 10⁻³ sec neutron & x-ray diffraction

- what is measured in scattering experiments? correlations in space and time reciprocal space transformation into real space
- what does it take to get a magnetic scattering probe? magnetic sensitivity appropriate wavelength appropriate energy chemical and electronic sensitivity
 neutrons, x-rays, polarised atoms, ...

He* beams M.Marynowsky et al. PRB 60, 6053 (1999)

- neutron-nuclei interaction
 Fermi length b ≈ 10⁻¹² cm
- magnetic interaction spin 1/2 total magnetic moment $M \approx \langle L \rangle + 2 \langle S \rangle$ $g_n r_0 M/2 \approx 0.5 \ 10^{-12} \ cm$ separation L/S difficult no chemical sensitivity

$$a_{\rm m} = \frac{g_{\rm n} r_0}{2\mu_{\rm B}} \left\{ \hat{\mathbf{Q}} \times \left(\mathsf{M}(\mathbf{Q}) \times \hat{\mathbf{Q}} \right) \right\} \cdot \hat{\sigma}$$

polarised neutrons (not for free!)

 inelastic neutron scattering possible incident energy : few meV up to 100 meV resolution 0.001-1 meV 10⁻⁹-10⁻¹² sec observation of collective modes (i.e. spin-waves)

local excitations (crystal fields transitions)

diffuse fluctuations

 intensity limited experiments flux at sample 10⁸ n/cm²/s sizeable sample volumes low spatial resolution - "large" beams restricted access to real-time mode

X-ray magnetic scattering X-rays: weak relativistic interaction Thomson scattering

F. De Bergevin Acta Cryst. 1981)

weak scattering amplitude but flux at sample 10¹² ph/mm²/s and L/S separation

 $(\mathcal{Q}) =$

total scattering amplitude :

$$f_n^{\mathsf{r}}(k,k',\mathsf{h}\omega) = f_n^{\mathsf{charge}}(\overset{\mathsf{r}}{Q}) + f_n^{\mathsf{non-res}}(\overset{\mathsf{r}}{Q},k,k') + f_n^{\mathsf{res}}(\overset{\mathsf{r}}{k},k',\mathsf{h}\omega) \quad (1)$$

$$f_n^{\mathsf{charge}}(\overset{\mathsf{r}}{Q}) = -\rho_n(\overset{\mathsf{r}}{Q})\,\hat{\varepsilon}.\hat{\varepsilon}' = -\rho_n(\overset{\mathsf{r}}{Q})\begin{pmatrix}1&0\\0&\cos2\theta\end{pmatrix} \quad (2)$$

 $\rho_n(Q)$

0

 $\cos 2\theta$

10

$$f_n^{\text{non-res}}(\hat{Q}, \hat{k}, \hat{k}') = -i \frac{hQ}{mc} 2S \times \\ \begin{pmatrix} \cos\theta \ \hat{S}_2(Q) & \sin\theta \left[\cos\theta \ (\hat{S}_1(Q) - \frac{L_1(Q)}{S}) + \sin\theta \ \hat{S}_3(Q)\right] \\ \sin\theta \left[\cos\theta \ (\hat{S}_1(Q) + \frac{L_1(Q)}{S}) + \sin\theta \ \hat{S}_3(Q)\right] & \cos\theta \ (\hat{S}_2(Q) + 2\sin^2\theta \ \frac{L_2(Q)}{S}) \end{pmatrix} \end{pmatrix}$$

11

two main points

 non-resonant magnetic intensities are weak and must be distinguished from charge scattering peaks (crystal structure)

intensity ratio around 10⁻⁶

$$\frac{\text{mc}}{\text{h}} = 2.59 \text{ A}^{-1}$$
$$\frac{\text{hQ}}{\text{mc}} 2\text{S} \approx 10^{-3}$$

12

rotation of polarisation

electrons are not at rest- they form bound states any consequences?

UAs simple antiferromagnetic Bragg peak

intensity as a function of photon energy

large resonant effects near absorption edges

enhanced intensities ~ 10⁶ cts/s

30 x 10⁶

1012

Resonant X-ray scattering

resonant process : probe of excited states scattering amplitude depends on the relative direction of the electrical field and the local quantization axis (magnetic moment, ...) atomic scattering factors are NOT spherical tensors

magnetic contrast : e⁻ spin polarisation

sensitivity to long range order Bragg peaks in scattering

element selectivity electronic shell selectivity large intensities

C. Vettier Institut Laue Langevin

European School on Magnetism Constanta

L,,,Edge E_ s - p - c s-p E1: 2p32→5d522 E2: 2p32 -> 4f72 2D32 J. Hannon et al. PRL (1988) 7-16 September 2005 14

$$f_n^{\text{res}}(k,k',h\omega) = f_{E1}^{\text{res}} + f_{E2}^{\text{res}}$$

• dipole resonances

z : magnetization direction

$$f_{E1}^{res} = F^{(0)} \varepsilon' \cdot \varepsilon - i F^{(1)} (\varepsilon' \times \varepsilon) \cdot z + F^{(2)} (\varepsilon' \cdot z) (\varepsilon \cdot z)$$

$$= F^{(0)} \begin{pmatrix} 1 & 0 \\ 0 & \cos 2\theta \end{pmatrix} - i F^{(1)} \begin{pmatrix} 0 & z_1 \cos \theta + z_3 \sin \theta \\ z_1 \cos \theta - z_3 \sin \theta & -z_2 \sin 2\theta \end{pmatrix}$$

$$+ F^{(2)} \begin{pmatrix} z_2^2 & -z_2(z_1\sin\theta - z_3\cos\theta) \\ z_2(z_1\sin\theta + z_3\cos\theta) & z_1^2\sin^2\theta + z_3^2\cos^2\theta \end{pmatrix}$$

$$f_{E1}^{res} = F^{(0)} \varepsilon' \cdot \varepsilon - i F^{(1)} (\varepsilon' \times \varepsilon) \cdot z + F^{(2)} (\varepsilon' \cdot z) (\varepsilon \cdot z)$$

connection with absorption and spectroscopy - XMCD Q=0 $\varepsilon' = \varepsilon$

linear polarisation (real polarisation vectors) response quadratic in z Cotton-Mouton effect

circular polarisation

response linear in z circular dichroism (see Faraday and MO Kerr effects)

strength of resonance

order of transitionoverlap integralsspin-polarisation of intermediate states

olomonte	odao	transition	intermediate	energy	wavelength	
elements	euye	ti alisi tion	states	(keV)	(Å)	
3d	Κ	E1,E2	4p, 3d	7.112	1.743	pprox 0.01 r ₀
Fe	L3	E1	3d	0.707	17.54	$\approx 1 r_0$
5d Pt	L3	E2	5d	11.65	1.072	
4f	L	E1,E2	5d, 4f	7.24	1.71	$\approx 0.1 r_0$
Gd	М	E1	4f	1.22	10.2	\approx 100 r ₀
5f	L	E1,E2	6d, 5f	17.17	0.722	
U	М	E2	5f	3.74	3.32	pprox 10 r ₀

Magnetic scattering methods

neutrons

- spin 1/2
 magnetic moment
 polarimetry
 large magnetic sensitivity
- mass
 moderate energy
 inelastic scattering
- low brilliance beams low spatial resolution

synchrotron x-rays

- high brilliance beams suited for surfaces and films
- chemical sensitivity
- electronic shell sensitivity
 resonant process
- relatively weak magnetic sensitivity away from resonances
- magnetic inelastic scattering not feasible

Choice of experimental methods

• determination of magnetic structures/arrangements

powder samples	neutrons
crystals	neutrons
surfaces	x-rays

origin of magnetic moments form factor/resonance L/S hybridisation

 magnetic excitations so far not possible with x-rays neutrons/x-rays x-rays/ neutrons x-rays

neutrons not discussed here

Magnetic structure determinations

- powder diffraction : Fourier components
- neutrons : unique tool for magnetic structure
 determination

powder diffraction refinement on crystals

necessary technique

used days and nights

 progress in instrumentation faster acquisition smaller sample volumes

C.G. Shull at al PR 76, 1256 (1949)

20

only example from synchrotron

- UO₂ powder
- experiments at Daresbury
- U M₄ edge

S.P. Collins et al. J. Phys. Cond. 7, L223 (1995)

 single crystals - once Fourier components are known! scattering work with x-rays requires good single crystals

neutrons are easier to handle

low absorption and many more reflections exceptions Gd, B, GdB6 : M. Amara PRB 72, 64447 (2005) resonant x-ray magnetic scattering

low energy photons - absorption

sample environment

cryostatsmagnetshigh pressuretransmission / brilliance

heat load problems with x-rays

special case : resolution effects magnetic diffuse scattering from single quasicrystal Zn₆-Mg₃-Ho₁ icosahedral polarised neutrons

2-fold

3-fold

strong peaks near absent crystal Bragg peaks antiferromagnetic correlations 5-fold

broad distribution in Q-space neutron resolution in Q-space is adapted

T.J. Sato et al. 1998 ILL

special case : resolution effects comparison neutrons/x-rays scattering experiments reciprocal space

magnetic ordering of Pr sites $PrBa_2Cu_3O_{7-\delta}$ IC modulation well ordered, $\xi \ge 900$ long period, 600 Å

count rates !

C. Vettier Institut Laue Langevin

European School on Magnetism Constanta

7-16 September 2005

surfaces x-rays well suited

Constanta

resonant magnetic scattering at low photon energy absorption length is short (500-5000Å)

UO₂ U M-edge

observation of magnetic order at surfaces phase transitions

European School on Magnetism

Magnetism at surfaces

NiO

non-resonant scattering grazing incidence scattering

A. Barbier et al. PRL 93, 25708 (2004)

depth sensitive surface ordering well-defined 2D order

Melting of S-domains

real interfaces are not sharp effects of underlying "skin"

off-specular scattering neutrons and x-rays

- thin films and devices depth sensitivity reflectivity domain correlations RXMS specular scattering circular polarisation
- trilayer Co(35Å)/Cr(35Å)/Co(50Å)
- element sensitivity
 Co L₃ edge

angular dependence coupling between layers (Cr)

U. Hillebrecht et al. Science 284, 2099 (1999)

- lateral effects
- off-specular signal

polarised neutron reflectivity multilayers [Cr(9Å)Fe(58Å)] exchange bias

columns through layers average size 3000Å

H.J. Lauter et al. Appl.Phys.Lett. 74, S1557 (2002)

XMCD

soft x-ray range (low energy) circular x-ray polarisation element sensitivity

XMCD & PhotoElectron Emission Microscopy PEEM

imaging of magnetic domain/walls

Co/Cu/Ni trilayer

coupling mechanism through domain wall stray fields

importance for thin film technology

imaging in real-time

D. Neeb et al. J.Phys.:Cond. Matter 17 S1381 (2005)

pump and probe

synchronized of magnetic field pulses

FeNi/Cu/Co trilayer in-plan field pulses soft layer domains change

hard layer domains unchanged

W. Kuch et al. Applied Phys. Lett., 85, 440 (2004)

7-16 September 2005

• structure determination

powder diffraction neutrons

Fourier components

moments directions

32

- details in magnetic structures
 resolution effects neutrons/x-rays
 absorption
- imaging x-rays
- surfaces x-rays
 "skins" neutrons and x-rays

- which electrons carry magnetic moments ?
 - which atoms ?
 - which electronic bands ? symmetry ?
- structure factors :
- neutron scattering :
- x-ray scattering :

where scattering arises from! but model-dependent magnetic form factors spin density maps resonant scattering chemical + electronic selectivity non-resonant scattering L/S

- magnetic form factors
- neutrons : the perfect tool spherical polarimetry ³He neutron spin filter
- flipping ratio measurements

$$R = \left(\frac{N+M}{N-M}\right)^2 \approx 1 + 4 \frac{|NM|}{|N|^2}$$

J. Brown et al. 1999

- ferromagnets, saturated paramagnets
- antiferromagnets

• spin density maps

Iron

C. Shull et al. J. Phys Soc. Jpn 17, BIII, 1 (1962)

- organic materials
 - molecular magnets
 - high Tc ?

couplings driven by radical and crystal packing

S. Pillet et al. (2001)

36

Nitrophenyl nitronyl nitroxide Tc=0.6K

L/S separation
 magnetic form factor NiO

H.A. Alperin PRL 6, 55 (1961) scaling factor in Q space

inclusion of covalence and ligands orbital momentum contribution ?

W. Marshall and S.W. Lovesey Theory Thermal Neutron scattering

total scattering amplitude :

$$f_n(k,k',h\omega) = f_n^{\text{charge}}(\overset{r}{Q}) + f_n^{\text{non-res}}(\overset{r}{Q},\overset{r}{k},k') + f_n^{\text{res}}(\overset{r}{k},k',h\omega)$$
(1)

$$f_n^{\text{charge}}(\stackrel{\mathsf{r}}{Q}) = -\rho_n(\stackrel{\mathsf{r}}{Q})\hat{\varepsilon}.\hat{\varepsilon}' = -\rho_n(\stackrel{\mathsf{r}}{Q})\begin{pmatrix}1&0\\0&\cos 2\theta\end{pmatrix} \qquad (2)$$

38

$$f_n^{\text{non-res}}(\hat{Q}, \hat{k}, \hat{k}') = -i \frac{hQ}{mc} 2S \times \begin{pmatrix} \cos\theta \ \hat{S}_2(Q) & \sin\theta \left[\cos\theta \ (\hat{S}_1(Q) - \frac{L_1(Q)}{S}) + \sin\theta \ \hat{S}_3(Q)\right] \\ \sin\theta \left[\cos\theta \ (\hat{S}_1(Q) + \frac{L_1(Q)}{S}) + \sin\theta \ \hat{S}_3(Q)\right] & \cos\theta \ (\hat{S}_2(Q) + 2\sin^2\theta \ \frac{L_2(Q)}{S}) \end{pmatrix}$$

X-rays : no modelling of data

non-resonant x-ray scattering separation L/S

measure of orbital moment in NiO

V. Fernandez et al. PRB 57, 7870 (1998)

similar results on NiFe₂O₄ using XMCD G. van der Laan et al. PRB 1999

other oxides

W. Neubeck et al. J.Phys.Chem.Solids 62, 2173 (2000)

large incident flux from synchrotron sources

resonant effects have made x-ray scattering experiments popular

large resonant enhancements

in particular at M edges

D.B. McWhan et al. PRB 42, 6007 (1990)

• important edges

E1	ΔΙ	=	1
E2	ΛΙ	=	2

			typical edges		
alamants	edge	transition	intermediate	energy	wavelength
elements			states	(keV)	(Å)
3d	К	E1,E2	4p, 3d	7.112	1.743
Fe	L3	E1	3d	0.707	17.54
5d Pt	L3	E2	5d	11.65	1.072
4f	L	E1,E2	5d. 4f	7.24	1.71
Gd	М	E1	4f	1.22	10.2
5f	L	E1,E2	6d, 5f	17.17	0.722
U	М	E2	5f	3.74	3.32

- wide energy range
- Iimitations
 Bragg cut-off

absorption

strength of the resonance

E1 transition to the interesting e- levels

across series

		3d series		
element	K edge	L1 edge	L2 edge	L3 edge
	(eV)	(eV)	(eV)	(eV)
Sc	4492	498	403	399
Ti	4966	561	461	454
V	5465	623	520	512
Cr	5989	696	584	574
Mn	6539	769	650	639
Fe	7112	845	720	707
Со	7709	925	793	778
Ni	8333	1008	870	853
Cu	8979	1097	952	932
Zn	9659	1196	1045	1022

valence state

TmSe Tm ions in 2 different configurations Tm²⁺ and Tm³⁺

Origin of magnetic moments

- chemical selectivity

 absorption edges
 alloys, compounds, intermetallics
 heteromagnetic multilayers, ...
- U_{1-x}Np_xRu₂Si₂ antiferromagnetic system incommensurate structure at x=0 (neutron scattering) magnetic intensity at (00 4+q) separation of U and Np response E. Lidström et al. PRB 61, 1375 (2000)

Origin of magnetic moments

element specific studies Uranium is driven by Neptunium

• studies : multilayers

C.T. Chen at al. PRB 1993 Y.U. Idzerda PRB 1993 V. Chakarian et al. PRB 1996 N. Ishimatsu et al. PRB 1999 Fe/Gd

• induced moment on V in V/Fe ML M. Sacchi et al. PRB 1999

scattering probes have characteristic time scales energy resolution !

• x-rays **∆E** ≈ 1 eV

fast fluctuations 10⁻¹⁵ sec

- neutrons ∆E ≈ 0.001-0.2 meV slow fluctuations 10⁻⁸-10⁻¹²sec
- do we measure the same quantities ? itinerant systems/insulators

47

NEUTRONS

magnetic structure determination polycrystals

magnetisation densities

magnetic excitations local collective

SYNCHROTRON LIGHT

imaging and timedependence devices

chemical selectivity electronic selectivity surfaces microcrystals (resonance)

48

Magnetic X-rays versus Neutrons

- neutrons are magnetic
- x-rays are electronic
- well defined domains of excellence for neutrons and x-rays magnetic structure determinations/ imaging nano-objects excitations / origin of moments
- x-ray methods are relatively recent and will develop
- gains in neutron optics are expected new neutron sources are being prepared new x-ray sources are dreamed of
 - new x-ray sources are ureanied o

• one probe + another probe makes more than two probes

C. Vettier Institut Laue Langevin European School on Magnetism Constanta 7-16 September 2005

ORIGIN OF MAGNETIC MOMENTS

• are neutrons sensitive to electronic properties ?

magnetic form factor

Fourier transform of magnetic electrons

J. Brown et al. 2002

- important for magnet technology
- important for chemistry
- x-rays could be used at O, N absorption edges but wavelength is too long for diffraction

only Q=0 experiments (absorption, dichroism, ..) no spatial information

52