Magnetic properties of Ferromagnetic Semiconductor (Ga,Mn)As

M. Sawicki

Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.

In collaboration with: T. Dietl, et al., Warsaw

- B. Gallagher, et al., Nottingham
- L.W. Molenkamp, et al., Wuerzburg
- H. Ohno, et al., Sendai

Support by: Japanese ERATO, EU FENIKS, Polish MNII

Outlook

- Introduction
 - motivation/history
- T_c and M_s
- Uniaxial magnetic anisotropy due to confinement and/or biaxial (epitaxial) strain
 - reorientation transition
- Biaxial (cubic, 4-fold) in-plane anisotropy
- Uniaxial in-plane anisotropy
 - reorientation transition
 - single domain behaviour

Hole driven ferro-DMS, mostly (Ga,Mn)As

Spintronics

Making spins to:

- store and reveal information in a faster way
- transmit information (supplementing charge and light)
- process information (supplementing charge)

Spin valve (or MTJ)

Main applications:

- magnetic field sensors
- read heads
- galvanic isolators
- Magnetoresistive RAMs

Why semiconductor spintronics?

Semiconductor Spin-electronics (Spintronics)

Spin-related phenomena in semiconductors \rightarrow an additional degree of freedom (spin + charge \rightarrow **spintronics**)

Ferromagnetic semiconductors

May offer a possibility to replace of 'All metal' Spin-Based Electronic Devices

- they posses both spins and mechanism that effectively couples spins with carriers.
- technological compliance with semiconductor industry.

Towards ferromagnetic semiconductors

magnetic semiconductors

magnetic semiconductors and insulators: short-range antiferromagnetic superexchange EuTe, ..., NiO, ... short-range ferromagnetic super- or double exchange EuS, $ZnCr_2Se_4$, $La_{1-x}Sr_xMnO_3$, ...

EuS/KCI,...

diluted magnetic semiconductors

Standard semiconductor + magnetic ion

History of DMS

Rys. 2. Przykład jak można tworzyć półprzewodniki półmagnetyczne. Oczywiście można również tworzyć skośne połączenia np GaMnSb, ZnFeSe...

Abstract: The paper considers a new group of solid states — alloys between semiconducting and magnetic compounds. The materials conserve main properties characteristic for semiconductors (doping in wide range of concentration on n and p type, well defined band structure E(k)) but contain strong localized spins introduced by transition elements. New physical phenomena are observed mainly at low temperatures and in the presence of magnetic field. Experimental results are presented for HgMnTe and CdMnTe type of mixed crystals.

Most of DMS: random antiferromagnet

short range antiferromagnetic superexchange

Evidences for antiferromagnetic interactions: magnetic susceptibility

TEMPERATURE T(κ) A. Lewicki et al.

Magnetisation of localized spins

 $M(T,H) = g\mu_B S \mathbf{x}_{eff} N_o B_S [g\mu_B H/k_B (T + T_{AF})]$

antiferromagnetic interactions

 $X_{eff} < X$

 $T_{AF} > 0$

Modified Brillouin function

no spontaneous magnetisation ...

Determination of sp-d exchange integrals: - giant splitting of exciton states

no s-d hybridization => potential s-d exchange

-- p-d: $I_{pd} \equiv \beta N_o \approx$ - 1.0 eV

large p-d hybridization and large intra-site Hubbard U =>
kinetic p-d exchange

Effect of acceptor doping on magnetic susceptibility in Zn_{1-x}Mn_xTe:P

Ferromagnetic temperature in p-(Zn,Mn)Te

- ferromagnetism disappears in the absence of holes
- ferromagnetism on both sides of metal-insulator transition

Ferrand et al. (Grenoble, Warsaw) PRB'01 Sawicki et al. (Warsaw) pss'02

Ferromagnetism in DMS – the origin

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

Ferromagnetism in DMS – the origin

-- carriers localized by impurities (BMP): inoperative

Bhatt et al., Dugaev et al., Inoue et al., Das Sarma et al., Dagotto et al.,

Ryabchenko, et al., Dietl et al., MacDonald et al., Boselli et al., Petukhov, Sham et al., $T_C = x_{eff} N_0 S(S+1) J^2 A_F \rho(\epsilon_F) / 12k_F$ holes!!! = valence band

-- delocalized carriers (Zener/RKKY model)

- -- s-d: $I_{sd} \equiv \alpha N_o \approx 0.2 \text{ eV}$ no s-d hybridization
- -- p-d: $I_{pd} \equiv \beta N_o \approx$ 1.0 eV large *p-d* hybridization

Exchange spin splitting redistributes the carriers between spin subbands thus lowering their energy

Why DMS, why (Ga,Mn)As?

Carrier mediated ferromagnetism in semiconductors:

 $x = 0.05, p = 3.5 \times 10^{20} \text{ cm}^{-3}$ С Si Ge AIP **AIAs** GaN GaP GaAs GaSb InP InAs InSb **ZnO** ZnSe ZnTe CdTe 100 10 1000 **Curie temperature (K)**

More than 20 compounds showed ferro- coupling so far

Operational criteria:

- Scaling of *T*_C and *M* with *x* and *p*
 - Interplay between semiconducting and ferromagnetic properties

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

T. Dietl, et al., Science 2000

(Ga,Mn)As: single phase ferro-DMS

School of Magnetism: M. Sawicki on (Ga, Mn)As - Constanta 9/09/2005

Operational criteria for carrier-controlled ferromagnetic semiconductors

Also:

H. Ohno et al., Nature'00

- Current induced domain wall switching J_c~10⁵ A/cm²
 - M. Yamanouchi, et al., Nature'04
- Electrically assisted magnetisation reversal

D. Chiba, et al., Science'03

Why DMS, why (Ga,Mn)As?

Carrier mediated ferromagnetism in semiconductors:

 $x = 0.05, p = 3.5 \times 10^{20} \text{ cm}^{-3}$ С Si Ge AIP **AIAs** GaN GaP GaAs GaSb InP InAs InSb **ZnO** ZnSe **ZnTe** CdTe 100 10 1000 **Curie temperature (K)** T. Dietl, et al., Science 2000

More than 20 compounds showed ferro- coupling so far

Operational criteria:

- Scaling of *T*_C and *M* with *x* and *p*
 - Interplay between semiconducting and ferromagnetic properties

T_c in (Ga,Mn)As: prospects

Mn in GaAs

Growth of (Ga,Mn)As

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

Mn interstitials

c-RBS and **c-PIXE** reveal: in low-temperature MBE grown ferromagnetic (Ga,Mn)As **Mn atoms occupy three distinct positions in the lattice**

substitutional Mn_{Ga}, interstitial Mn_I, and random (MnAs) in proportions depending on annealing.

Potashnik et al.,'02

Growth of (Ga,Mn)As

School of Magnetism: M. Sawicki on (Ga, Mn)As - Constanta 9/09/2005

(apparent) 'Magnetisation deficit'

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

- (Ga,Mn)As emerges as the best understood model ferromagnet with a number of attractive functionalities
- Control of magnetism and magnetization direction is possible by external means
- Beginning of the road for high temperature ferromagnetic semiconducting system

The magnetic anisotropy

- Testing/verification for models
- Device engineering
 - magnetoresistive AMR ~ $\cos^2(\measuredangle j, \overline{M})$
 - spin injection/detection

Datta & Das (1990)

utilisation of the magnetic anisotropy

Magnetocrystalline vs. shape anisotropy

Despite the expected for the layered material in-plane arrangement of M $(H_A = M_S)$, relatively strong **perpendicular (uniaxial) magnetic anisotropy** has been observed since the very beginning of the studies:

- (In,Mn)As/GaAs Munekata '93
- some (Ga,Mn)As/InGaAs Ohno, Shono '96-'00
- QW (Cd,Mn)Te Haury '97
- Ga,Al,Mn)As/GaAs Takamura '02
- Ga,Mn)As/GaAs Sawicki '02

$H_A >> M_S \Rightarrow$ magnetocrystalline anisotropy dominates over the shape effects M_S in 5% (Ga,Mn)As \cong 600 Oe

22000 Oe for Fe

T_d symmetry of the host lattice \downarrow

MA of p-DMS: the epitaxial origin

Excellent micromagnetic properties

- Large values of K_a (= M_SH_a / 2) and A hinder domain formation
 Domain wall energy E = (K_a A)^{1/2}
- Dilute systems: low M_S

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

Magnetic anisotropy – the origin

•EPR studies shows that Mn single ion anisotropy is negligible Fedorych et al., 2002

• p-d Zener Model - Mn - Mn interaction is mediated by holes, characterised by a non-zero orbital momentum

It is the anisotropy of the carrier-mediated exchange interaction stemming from spin-orbit coupling of hole gas.

Valence band structure (Zinc-blende Γ_7 and Γ_8)

Schrödinger equation: $(H_{kp} + H_{pd} + H_{bs})\Psi = E\Psi$ basis function:

$$u_{1} = \frac{1}{\sqrt{2}}(X + iY) \uparrow, \qquad u_{2} = i\frac{1}{\sqrt{6}}\left[(X + iY) \downarrow -2Z \uparrow\right], \qquad u_{3} = \frac{1}{\sqrt{6}}\left[(X - iY) \uparrow +2Z \downarrow\right],$$
$$u_{4} = i\frac{1}{\sqrt{2}}(X - iY) \downarrow, \qquad u_{5} = \frac{1}{\sqrt{3}}\left[(X + iY) \downarrow +Z \uparrow\right], \qquad u_{6} = i\frac{1}{\sqrt{3}}\left[-(X - iY) \uparrow +Z \downarrow\right].$$

Fermi Surface at $E_{\rm F}$ = 100 meV

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

Dispersion of strained (Ga,Mn)As

Fermi Surface at $E_{\rm F}$ = 100 meV

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

1. strain, confinement or both split the hh from lh

- 1. strain, confinement or both split the hh from lh
- 2. if $M \neq 0$ the lower energy state: for hh (l=±1) when $k \perp M$

• hh. subband occupied \rightarrow easy [001] ($K_U > 0$; strong)

1. strain, confinement or both split the hh from lh

2. if $M \neq 0$ the lower energy state: • for Ih (I=0) when $k \parallel M$

• hh. subband occupied \rightarrow easy (001) ($K_U < 0$; weak)

Magnetic anisotropy – epitaxial origin

Epitaxial (biaxial) strain \Rightarrow Splitting of the hole states

\Rightarrow uniaxial anisotropy

- hh. subband occupied
 perpendicular anisotropy (strong)
- Ih. subband occupied
 in-plane anisotropy (weak)

Valence band engineering – (Cd,Mn)Te QW

Compensation of confinement induced hh/lh splitting by epitaxial tensile strain

The measurements

Tailoring the magnetic anisotropy

hh/lh influence on uniaxial anisotropy

 $T_{2d} \Rightarrow D_{2d}$ symmetry lowering, growth direction is the quantisation axis, hh/lh population plays decisive role

$$K_{u} = f(k p \ 6 \times 6 H + H_{p-d}, H_{Strain})$$

hh/lh influence on anisotropy

Both types of anisotropy possible
 2nd order phase transition in-between

Perpendicular magnetic anisotropy

1) For low enough *p* perpendicular magnetic anisotropy in compressively strained (Ga,Mn)As/GaAs is observed (in-plane for tensile case)

hh/lh influence on anisotropy

2) The reorientation: easy axis \Leftrightarrow easy plane

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

The reorientation transition: temperature

Temperature influence on hh/lh population ratio: $h\omega_{s} \sim M = f(T)$

Tailoring the magnetic anisotropy

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

The reorientation transition: hole density

The reorientation transition: hole density

Gate

Light InMnAs/GaSb heterojunction

Koshihara et al., '97; X. Liu et al., '04

Compensation

- Hydrogenation Lemaitre et al., 27 ICPS '04 Brandt et al., '04

Penn State '02, Nottingham '03, & everywhere else

Thevenard, et al., '05

Hole density change: LT annealing

Post growth LT annealing increases hole density Annealing influence on magnetic anisotropy/ reorientation transition

Hole density change: LT annealing

Post growth LT annealing increases hole density Annealing influence on magnetic anisotropy/ reorientation transition

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

Control of the magnetism in nano scale

Patterning magnetic nanostructures

Controlling quantum magnetic dots

- Confinement and Strain induced magnetocrystalline anisotropy observed.
 - character
 - magnitude
 - reorientation transition
- consistent with p-d Zener model

The epitaxially induced D_{2d} symmetry suggests 4-fold (biaxial) magnetic inplane anisotropy

4-fold in-plane magnetic anisotropy

Calculations: Dietl, Ohno, Matsukura, PRB 2001

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

Field induced coherent rotation

Field induced coherent rotation: low T

A proof of:

- Formation of macroscopically large domains
- 4-fold magnetic symmetry

Temperature dependence of in-plane magnetic anisotropy

Temperature dependence of in-plane magnetic anisotropy

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

Strong uniaxial behaviour with either [-110] or [110] the easy axis, seen on all studied samples, *usually* dominating close to T_c

(near perfect single domain behaviour!!)

M. Sawicki, et al.,, PRB '05

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

Welp et al., '04

Nottingham, '04

Precluded by symmetry considerations. Not expected in D_{2d}.

- Thickness independent: seen from 7 μm down to 5 nm
- Not sensitive to etching

surface/interface anisotropy not important

$D_{2d} \rightarrow C_{2v}$ symmetry lowering:

(In C_{2v} [110] and [-110] are not equivalent)

Mn concentration gradient along growth axis

Sadowski et al., 2004

- preferential incorporation of Mn during Welp et al., 2004

growth

More information required.....

 There are samples with the easy axis switching from [-110] to [110] on increasing T

- There are samples with the uniaxial easy axis switching from [-110] to [110] on increasing T;
- It switches also upon annealing if $p \ge 6 \times 10^{20}$ cm⁻³

M. Sawicki, et al., PRB'05

M(T) in presence of two competing in-plane anisotropies: single domain case

$$E_{m} = -K_{C}/4 \sin^{4}(2\theta) + K_{U}\sin^{2}\theta - MHcos(\varphi - \theta)$$

$$K_{C} \sim M_{S}^{4} \leftarrow expected \Rightarrow K_{U} \sim M_{S}^{2}$$

K. Wang, et al., cond-mat '05

School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005

Phenomenological description of magnetic anisotropy in single domain (Ga,Mn)As

$$E_{m} = -K_{C}/4 \sin^{4}(2\theta) + K_{U}\sin^{2}\theta - MH\cos(\varphi - \theta)$$

$$K_{C} \sim M_{S}^{4} \iff expected \implies K_{U} \sim M_{S}^{2} M_{[-110]}^{2} + M_{[110]}^{2} = M_{S}^{2}$$

K. Wang, et al., cond-mat '05

Conclusions

Magnetic anisotropy in hole-controlled ferro-DMS:

- □ magnetic anisotropy effect of s-o interaction in the valence band
- z-axis (perpendicular)/in plane anisotropies controlled by confinement and epitaxial strain
- in-plane anisotropy: competition of biaxial(cubic) and uniaxial anisotropy – origin not yet understood
- three Spin Reorientation Transitions observed:
 - perpendicular \Leftrightarrow in plane
 - <100> ⇔ [-110]
 - *[-110]* ⇔ *[110]*

possibility of easier magnetisation manipulation

phenomenological self-consistent description possible in single domain model