X-ray reflectivity and Grazing Incidence Small Angle X-Ray Scattering

<u>G. Renaud,</u>

CEA-Grenoble, France

Département de Recherche Fondamentale sur la Matière Condensée Service de Physique des Matériaux et des Microstructures And ESRF, BM32 beamline

grenaud@cea.fr

European School on Magnetism New Experimental Aproaches in Magnetism

Constantza, Romania, Sept 7-16, 2005

Introduction

Nanoparticles, nanowires, thin films and multilayers... have New physical properties (e.g. magnetic, but also electronic, catalytic or photonic)

Atomic structure, size, shape & organization

Growth conditions &

Morphology, temperature ... of the substrate surface

complementary to Near Field Microscopy

- non destructive statistical information over mm scale
- depth sensitivity, from 20 Å up to several mm
- length scale probed : from a few Å to mm

X-ray

- quantitative analysis
- following in-time: deposit annealing gas adsorption
- in situ, in UHV, during growth (and sometimes in real time)
- no charge effects : insulating samples (single crystal oxide substrates)

X-Ray Scattering

$$\overrightarrow{q=k_f} - \overrightarrow{k_i} = \overrightarrow{G_{hkl}}$$
 vector of the reciprocal space

Explores Reciprocal Space

Reciprocal Space of nanostructures deposited on a substrate

- Structure, composition
- Epitaxial relashionships
- Relaxation
 - Coherent
 - Incoherent (dislocations)
- Registry / substrate lattice
- Intermixing with substrate
- Substrate distortions

Grazing Incidence Small Angle X-ray Scattering (GISAXS) and X-R Reflectivity (XRR)

Morphology @ nanometer scale

- Shape (facets, equilibrium shape)
- Dimensions
- Size distributions
- Organization
- Growth mode
- Density profile
- Thin film thickness
- Interface roughness
- Buried layers
 -

Nanostructures (nanoparticles, nanowires, thin films, multilayers ...) & **X-rays**

X-RAY METHODS AT GRAZING INCIDENCE

X-Ray Reflectivity: Principle

X-Ray
$$n_1$$
Reflectivity: $-- n_2 < 1$ n_2

adapted M. Tolan Univ. Dortmund

Reflection and refraction – Perfect surface

Reflection and refraction: perfect surface

• Fresnel equations:

Relationships between the amplitudes of incident, transmitted and reflected beam.

$$n=1$$

$$E_{0}$$

$$k_{i}$$

$$E_{0}$$

$$\alpha_{i}$$

$$\alpha_{f}=\alpha_{i}$$

$$\alpha_{t}$$

$$k_{t}$$

$$E_{t}$$

$$k_{t}$$

$$k_{t}$$

$$k_{t}$$

AmplitudeIntensityReflection
$$r = \frac{E_r}{E_0} = \frac{\sin(\alpha_i - \alpha_t)}{\sin(\alpha_i + \alpha_t)} \approx \frac{\alpha_i - \alpha_t}{\alpha_i + \alpha_t}$$
 $R = \left|\frac{E_r}{E_0}\right|^2$ Transmission $t = \frac{E_t}{E_0} = \frac{2\sin(\alpha_i)\cos(\alpha_t)}{\sin(\alpha_i + \alpha_t)} \approx \frac{2\alpha_i}{\alpha_i + \alpha_t}$ $T = \left|\frac{E_t}{E_0}\right|^2$

Limiting and asymptotic values for Fresnel equations

Exact evaluation of Fresnel reflectivity

$$\begin{aligned} R_{\rm F}(\alpha_i) &= |r|^2 = \frac{(\alpha_{\rm i} - p_+)^2 + p_-^2}{(\alpha_{\rm i} + p_+)^2 + p_-^2} \\ \alpha_t &= p_+ + \mathbf{i}p_- \\ p_{+/-}^2 &= \frac{1}{2} \Big\{ \sqrt{(\alpha_{\rm i}^2 - \alpha_{\rm c}^2)^2 + 4\beta^2} \pm (\alpha_{\rm i}^2 - \alpha_{\rm c}^2) \Big\} \end{aligned}$$

 \rightarrow Absorption β also play a significant role

Fresnel Reflectivity: $R_{F}(\alpha_{i})$ with absorption

Transmission Function with absorption

Penetration Depth with absorption

The geometry of X-ray reflectivity

Reflectivity from multilayers

Multiple scattering (dynamical calculation)

adapted M. Tolan Univ. Dortmund

Reflectivity from layer on substrate. Ex: PS on Si

→Reflectivity used as an everyday laboratory tool to measure the thickness of layers deposited on a substrate

adapted from M. Tolan Univ. Dortmund

Rough interfaces: statistics

Refractive Index Profile n(z)*Electron Density Profile* $\rho(z)$

adapted M. Tolan Univ. Dortmund

Reflectivity by a rough surface : which roughness ?

Same Roughness or & Refractive Index Profile n(z) !

Roughness in multilayers?

Effect of interfacial roughness on reflectivity: single interface

→ Reflectivity very efficient to measure (small) (statistically averaged) roughness of surfaces or interfaces.

Roughness at several interfaces

Thin film with surface and interface roughness. Example: PS layer on Si, with roughness

→Effects of surface and interface roughness very different → σ_1 , σ_2 and d can be determined independently Reflectivity calculation for arbitrary density profiles

Example of fit of reflectivity curve:

adapted M. Tolan Univ. Dortmund

Simplier aproach: Kinematical approximation

Example: roughness

$$\rho'(z) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{z^2}{2\sigma^2}) \Longrightarrow R(q) = R_F(q) \exp(-q^2\sigma^2)$$

Kinematical versus dynamical calculation

Pb: Loss of the phase:

Different ways to solve the phase problem:

- -Inclusion of pre-knowledge
- -Anomalous reflectivity

Ex: Multilayers:

 \rightarrow X-ray reflectivity used to characterize the thickness, period and roughnesses of multilayers.

Rough surfaces → diffuse scattering

→ Lateral features of the roughness – Height-height correlations

Ex.: Roughness correlations in multilayers?

Uncorrelated roughness

Wavelength-dependent inheritance of roughnes.

Conclusions on reflectivity

Specular reflectivity measures

- average density (mass and electron density)
- layer thicknesses
- interface roughness

Off-specular reflectivity probes

- Height-height correlations
- lateral order at nanometer-micrometer scale
- Refraction under grazing incidence
- tuneable scattering depth

Why GISAXS ?

GISAXS

- Statistical information
- Lateral and vertical correlation
- shape as seen by x-rays: input for diffraction experiments
- Information about buried objects

AFM / STM

- Local information
- Detailed shape

Grazing Incidence Small Angle X-ray Scattering (GISAXS)

2D image around direct beam: Fourier transform of objects

Morphology

- Shape
- Sizes
- Size distributions
- Particle-particle
 pair correlation function

Standard 3D growth (Volmer-Weber)

Example : 20 Å Ag/MgO(001) 500K

[100]

Q, [010]

Anisotropic islands: truncated square pyramids with (111) facets
Off-specular reflectivity:

Probed length scales?

La géométrie de diffusion : GISAXS et réflectivité

Le GISAXS ou comment mesurer des distances de l'ordre du nanomètre avec des rayons X ?

Le transfert de moment :
grandeur pertinente ?

$$\vec{q} = \vec{k}_{f} - \vec{k}_{i}$$

$$\vec{q} = \frac{2\pi}{\lambda} [\cos \alpha_{f} \cos 2\theta_{f} - \cos \alpha_{i}]$$

$$q_{x} = \frac{2\pi}{\lambda} [\cos \alpha_{f} \sin 2\theta_{f}]$$

$$q_{z} = \frac{2\pi}{\lambda} [\sin \alpha_{f} + \sin \alpha_{i}]$$

$$\vec{q} = \frac{2\pi}{\lambda} [\sin \alpha_{f} + \sin \alpha_{i}]$$

$$\vec{q} = \frac{2\pi}{\lambda} [\sin \alpha_{f} + \sin \alpha_{i}]$$

$$\vec{q} = \frac{2\pi}{\lambda} [\sin \alpha_{f} - \cos \alpha_{i}]$$

$$\vec{q} = \frac{2\pi}{\lambda} [\sin \alpha_{f} - \cos \alpha_{i}]$$

$$\vec{q} = \frac{2\pi}{\lambda} [\sin \alpha_{f} - \cos \alpha_{i}]$$

$$\vec{q} = \frac{2\pi}{\lambda} [\sin \alpha_{f} - \sin \alpha_{i}]$$

$$\vec{q} = \frac{2\pi}{\lambda} [\sin \alpha_{f} - \cos \alpha_{i}]$$

$$\vec{q} = \frac{2\pi}{\lambda} [\sin \alpha_{f} - \sin \alpha_{i}]$$

"No" limitation in 2θ : d from 100nm to 0.1nm

$$Q_x = 2k \sin\theta \sin(\omega - \theta)$$

$$Q_x = 2k \sin\theta \cos(\omega - \theta)$$

$$|Q_x| \simeq \frac{1}{2k} Q_z^2,$$

As the scattered intensity usually drops quite fast as a function of Q_z , the range of lateral momentum transfer is limited. Typically achievable scattering angles are in the order of $2\theta = 3^{\circ}$.³ This puts an upper limit to the the accessible range of lateral structure dimension:

$$d_{\parallel} > \frac{2\pi}{|Q_{x,\max}|} \simeq \frac{\pi}{k \sin^2 \theta}.$$

Using $2\theta = 3^{\circ}$ and $k \simeq 4 \text{ Å}^{-1}$ (for copper radiation), we obtain $|Q_{z,\max}| \simeq 0.005 \text{ Å}^{-1}$, i.e., XRR is suitable only for the investigation of *lateral* structures with dimensions d > 1000 Å (this value depends, of course, on the wavelength and on how rapidly the intensity drops with Q_z , which depends, e.g., very sensitively on surface and interface roughnesses). usually named α_i , the exit angle is α_f correspondingly. The reciprocal space coordiare given by the relations

$$Q_x = k (\cos \alpha_i - \cos \alpha_f \cos 2\theta)$$

 $Q_y = k \cos \alpha_f \sin 2\theta$
 $Q_z = k (\sin \alpha_i + \sin \alpha_f).$

 Q_z is equivalent to the corresponding expression in XRR, Eq. (2.2), but now Q_z is virzero, and Q_y is finite instead. Hence for the determination of parameters of the versample structure, XRR and GISAXS are equivalent. However, as is obvious from Fino restriction of Q_y due to the Laue zones exists, and consequently GISAXS is the m of choice for the investigation of small lateral structures ($d_{\parallel} < 1000$ Å). As a "prize the enlarged range of lateral momentum transfer, the lateral resolution is much so than for XRR:

$$\begin{aligned} |\Delta Q_y| &= \left| \frac{\partial Q_y}{\partial \theta} \right| \Delta \theta + \left| \frac{\partial Q_y}{\partial \alpha_f} \right| \Delta \alpha_f = \\ &= 2k \cos \alpha_f \cos 2\theta \Delta \theta + k \sin \alpha_f \sin 2\theta \Delta \alpha_f \\ &\simeq 2k \left(\Delta \theta + \alpha_f \theta \Delta \alpha_f \right) \\ |\Delta Q_y| &\simeq 1.5 \cdot 10^{-3} \text{ Å}^{-1}. \end{aligned}$$

Quantitative analysis of GISAXS

Equilibrium shape of particles. Ex: 1.5nm Pd/MgO @ 650 K

C. Revenant, F. Lazzari, F. Leroy, G. Renaud, C.R. Henry, PRB 69 (2004)

Self-organized growth : systems

Self-organized growth of cobalt islands on a

-Au(677) kinked surface

The kinked Au(677) surface

Modelisation of a kinked Au(677) surface

GISAXS data and fits

Co growth at room temperature

Self-organized growth : Systems

 Self-organized growth of cobalt islands on a

-dislocations network at the Ag/MgO(001) interface

Ordering of nanostructures induced by a dislocation network : principle

Misfit dislocation network

- Significant surface strain if : $H{<}\Delta$

Ag/MgO(001) ultra-thin film: in situ GIXS, XRR and GISAXS

Ultra-thin (5nm) Ag film of homogeneous thickness, with an ordered array of dislocation

4. Co Deposition

Room temperature : trap energy >> thermal energy
 Deposition rate (0.05 Å/min): diffusion length of Co adatoms >>10 nm

Self-organized growth of magnetic cobalt dots on an interfacial dislocation network : Co/Ag/MgO(100)

Position of Co islands / dislocation cores

Size and shape evolution of Co dots upon deposition time

$$I_{\text{interference}}(\vec{q}, time) = 2\sqrt{I_{disloc}}(\vec{q}) \times \cos\left(\vec{q}_{//}\vec{d}_{//} + q_{\perp}H\right)$$

Interference(q₁,time)

Conclusions

- GISAXS for the first time in situ during growth
- Combined with GIXS → Atomic structure + Morphology
- Quantitative information on nano-particles shape/size/ordering
- Very sensitive to the ordering of nanostructures

• *In situ* surface X-ray diffraction and GISAXS combined for determining conditions for ordering of Co islands on a Ag/MgO dislocation network

Determination of the nucleation site, size and shape of islands during organized growth of :

- Co on Au(111)
- Co on kinked Au(677) : in between kinks and at the step edges
- Co on Ag/MgO(001) : upon the dislocation core

Potential and future directions

•GISAXS extremely sensitive to the very premisses of organization

used to monitor organized growth in real-time and quickly reach the right thermodynamical and kinetic conditions for the organization.

In situ studies during

- → surface reactivity (e.g. catalytic reactions, annealings ...)
- \rightarrow growth (during MBE, (MO)CVD, LPE);
- \rightarrow use of gaseous, liquid or solid surfactants, at High p, T ...

•Eventually probing the shape & 2D organization of biological molecules deposited on surfaces?

→Conformation and function of selected bio-molecules?

La section efficace de diffusion en GISAXS et l'approximation de l'onde distordue DWBA

- « petits angles »
 - · pas d'effets de polarisation
 - diffusion par des écarts δp à la densité électronique moyenne = rugosité ou des variations de contraste électronique
- formulation cinématique de la diffusion (expression volumique)

$$\frac{d\sigma}{d\Omega} \propto \left| \int \delta \rho(\vec{r}) \exp(iq.\vec{r}) \right|^2$$

- α_i et α_f proches de l'angle critique de réflexion totale externe = effet de réfraction du faisceau ou pic de Yonéda
- DWBA = combinaison du traitement dynamique et cinématique de la diffusion
 - réflexion-réfraction aux interfaces
 - traitement cinématique de la diffusion par δρ, sans inclure les effets de diffusions multiples
 - approche similaire en réflexion neutronique
- section efficace calculée au premier ordre en théorie des perturbations par rapport au système idéal

Historique

- 1982 : DWBA et la diffraction en incidence rasante, G. Vineyard Phys. Rev. B26, 4146 (1982)
- 1988 : Théorie DWBA pour les surface rugueuses, S.K. Sinha et al., PRB 38, 2297 (1988)
- 1993 : DBWA et multicouches rugueuses corrélées, V. Holy et T. Baumbach, Phys. Rev. B 47, 15896 (1993), 49, 10668 (1994)
- 1994 : DWBA d'ordre 2 en réflectivité, D.K.G. De Boer, Phys. Rev. B 49, 5817 (1994), 51, 5297 (1995)
- 1995 : DWBA : rugosité et variation de contraste électronique, M. Rauscher, Phys. Rev. B 52, 16855 (1995)
- 1999 : GISAXS pour des îlots sur une surface, J. Appl. Phys., 86, 673 (1999)

Formulation de la DWBA

Point de départ : équation de Helmholtz $\langle \nabla^2 + k^2 \rangle \psi \rangle = V(r) |\psi \rangle$ pour l'onde électromagnétique $V(\vec{r}) = k^2 \left[1 - n(\vec{r})^2\right] = \overline{V(\vec{r})} + \delta V(\vec{r})$ Potentiel diffusant $\begin{array}{l} \text{Élément de matrice de transition } \left\langle f | T | i \right\rangle = \left\langle \widetilde{\psi}_{\mathrm{f}} \left| \overline{V} \right| \varphi_{\mathrm{i}} \right\rangle + \left\langle \psi_{\mathrm{f}} \left| \delta V | \chi \right\rangle \approx \left\langle \underbrace{\widetilde{\psi}_{\mathrm{f}} \left| \overline{V} \right| \varphi_{\mathrm{i}}}_{\overline{V}_{\mathrm{if}}} \right\rangle + \left\langle \psi_{\mathrm{f}} \left| \delta V | \psi_{\mathrm{i}} \right\rangle \\ & \underbrace{\psi_{\mathrm{f}} \left| \delta V | \psi_{\mathrm{f}} \right\rangle}_{\overline{V}_{\mathrm{if}}} \right\rangle \\ \end{array} \right\rangle$

 $\phi_i(\vec{r}) = \exp(i\vec{k}_i.\vec{r})$ $\psi_{i}(\vec{r}) = T_{i} \exp(i\vec{k}_{i}.\vec{r}) + R_{i} \exp(i\vec{k}_{i}.\vec{r})$ Vecteurs propres du système idéal $\widetilde{\psi}_{f}(\vec{r}) = T_{f}^{*} \exp(i\vec{k}_{f}.\vec{r}) + R_{f}^{*} \exp(i\vec{k}_{f}^{**}.\vec{r})$ Vecteurs propres du système idéal avec renversement temporel

Onde incidente

Règle d'or de Fermi

$$\begin{split} & \frac{d\sigma}{d\Omega} \propto \left\langle \left| \left\langle i \left| T \right| f \right\rangle \right|^2 \right\rangle = \left\langle \left| \overline{V}_{if} + \delta V_{if} \right|^2 \right\rangle \\ & \frac{d\sigma}{d\Omega} \right\rangle_{spec} \propto \left| \overline{V}_{if} + \left\langle \delta V_{if} \right\rangle \right|^2, \frac{d\sigma}{d\Omega} \right\rangle_{diff} \propto \left\langle \left| \delta V_{if} \right|^2 \right\rangle - \left| \left\langle \delta V_{if} \right\rangle \right|^2 \end{split}$$

Quelques exemples de sections efficaces en GISAXS

Développement suivant la géométrie du potentiel de diffusion Rugosité de surface $\frac{d\sigma}{d\Omega} \propto |T_i(\alpha_i)|^2 S(\vec{q}) |T_f(\alpha_f)|^2 \implies Pic \ de \ Yonéda$ $S(\vec{q}) = \frac{(\Delta \rho)^2}{|q_{\pi}|^2} \exp\{-[q_{\pi}^2 + q_{\pi}^{*2}]\sigma^2/2\} \times \iint_{S} \left[\exp\{q_{\pi}|^2 C(\vec{r}_{i/})\} - 1\right] \exp(i\vec{q}_{i/} \cdot \vec{r}_{i/}) d^2r_{i/} \qquad C(r_{i/}) = \left\langle z(r_{i/}) z(r_{i/} + r_{i/}) \right\rangle$

Remarques : principe de réciprocité

Cas limites : α_i, α_f• •α_c q_{zt}• q_z et |T| • 1 -approximation de Born valide q_{zt} σ• 1 - TF de la fonction d'autocorrélation de la rugosité

Multicouches rugueuses corrélées

Traitement analogue mais plus complexe ! Point de départ = optique des multicouches Complexité = corrélation hauteur-hauteur inter-couches

Inclusions sous la surface

Îlots sur une surface

$$\frac{d\sigma}{d\Omega} \propto |T_{i}(\alpha_{i})|^{2} S(q_{//}, q_{zt}) |T_{f}(\alpha_{f})|^{2}$$

$$S(\vec{q}) = \left| \int_{V} \exp(iq.\vec{r}) d^{3}r \right|^{2} \text{ Transformée de Fourier de l'objet diffusant}$$
Cas approfondi par la suite !

Distorted Wave Born Approximation (DWBA) for supported islands

M. Rauscher, T. Salditt et H. Spohn, Phys. Rev. B 52, 16855 (1995) M. Rauscher et al. J. Appl. Phys. 86 (12), 6763 (1999)

Coherent interferences between 4 waves with different q_z !

Diffuse Scattering due to size distributions, and sizes-distances and sizes-sizes correlations

Two usual extreme approximations neglecting correlations:

Correlations deduced from analysis of TEM images Pd/MgO(001)

In plane scattering : coherent versus incoherent ?

Result from scattering theory

Courtesy of V. Holy

Lateral size distribution and zeros of the form factor

Evolution of facetting as a function of annealing time

« Super-cristallography » of the Co cluster lattice on Au(111) before coalescence

Analysis parameters

- rectangular 2D paracrystal (∆K) with three variants oriented at 120°
- Triangular islands (R,H and size distribution)
- Centering of the mesh δy

GISAXS on Bimolecules B. Krause, ID01

Results: data analysis ISS

Example III: composition of Ge domes on Si

-5

-10

11043

Ge

Energy [eV]

11103

to amplify contrast:

measure at high Q!

T. Schülli et al PRL, 90, 66105 (2003)

Contrast variation: Q dependence

anomalous correction enhanced at high Q
higher resolution for ∆a/a = -q_r/Q
Si content from deviation of I_{E1}/I_{E2} for pure Ge
All possible GID reflections should be measured

Si interdiffusion : vertical composition profile from (A)-GID at (800)

7 ML MBE growth at 600°C Ge domes

Small size dispersion

Direct method!

RESULTS

- Sharp Si/Ge interface
- ≻Ge plateau at 85%
- ≻∆a/a monotonic
- > dot is highly strained

T. Schülli et al PRL, 90, 66105 (2003)

"Nano - Tomography": 3D real space image shape, size, strain and composition of Ge/Si alloy islands

11.2 ML Ge domes on Si (001) grown by CVD at 600°C

Results:

the lateral variation of the Ge concentration changes with height Si rich core covered by Ge rich alloy concentration from pure Si at bottom to pure Ge at top

T.Schülli *et al.* PRL90, 66105 (2003) A. Malachias *et al.* PRL91, 176101 (2003)

Oxide layer and crystalline core

oxidation \Rightarrow foot of the dot was part of the substrate

GaAs

Oxide layer and crystalline core

oxidation \Rightarrow foot of the dot was part of the substrate

GaAs

Magnetic resonant X-ray scattering from an array of CoPt multilayers

Coherent scattering on magnetic microstructures

Beutier – Chesnel

CF les PRBs.

(to be sensitive to surface)

Coherent Diffraction from a 5 μ \in

Christian Schroer, Edgar Weckert, Andreas Schropp, I. Vartanyants, Hasylab and ID01

Measurement

Simulation

- Elements of modern X-ray physics, J. Als-Nielsen et D. McMorrow, John Wiley&Son (2001)
- X-ray scattering from soft-matter thin films, M. Tolan, Springer Tracts in Modern Physics, Vol148 (1998)
- High-resolution X-ray scattering from thin films and multilayers, V. Holy, U. Pietsch et T. Baumbach, Springer Tracts in Modern Physics, Vol149 (1998)
- Scattering of X-rays and neutrons at interfaces, D. Dietrich et A. Haase, Phys. Rep. 260 (1995) 1-138
- Critical phenomena at surfaces and interfaces, H. Dosch, Springer Tracts in Modern Physics, Vol126 (1992)
- Surface X-ray diffraction, K. Robinson et D.J. Tweed, Rep. Prog. Phys. 55 (1992) 599-651
- Surface structure determination by X-ray diffraction, R. Feidenhans 'I, Surf. Sci. Rep. 10 (1989) 105-188

Aknowledgments

F. Leroy, C. Revenant, A. Létoublon, T. Schülli, M. Ducruet, O. Ulrich, CEA-Grenoble (France)

C.R. Henry, C. Mottet CRMCN, Marseille (France)

O. Fruchart, LLN, Grenoble, France

R. Lazzari, S. Rohart, Y. Girard, S. Rousset GPS, Paris (France)

A. Coati, Y. Garreau LURE, Orsay (France)

Thank you for your attention